Metamath Proof Explorer


Theorem dihsmsprn

Description: Subspace sum of a closed subspace and the span of a singleton. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses dihsmsprn.h 𝐻 = ( LHyp ‘ 𝐾 )
dihsmsprn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihsmsprn.v 𝑉 = ( Base ‘ 𝑈 )
dihsmsprn.p = ( LSSum ‘ 𝑈 )
dihsmsprn.n 𝑁 = ( LSpan ‘ 𝑈 )
dihsmsprn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihsmsprn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihsmsprn.x ( 𝜑𝑋 ∈ ran 𝐼 )
dihsmsprn.t ( 𝜑𝑇𝑉 )
Assertion dihsmsprn ( 𝜑 → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 )

Proof

Step Hyp Ref Expression
1 dihsmsprn.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dihsmsprn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 dihsmsprn.v 𝑉 = ( Base ‘ 𝑈 )
4 dihsmsprn.p = ( LSSum ‘ 𝑈 )
5 dihsmsprn.n 𝑁 = ( LSpan ‘ 𝑈 )
6 dihsmsprn.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
7 dihsmsprn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 dihsmsprn.x ( 𝜑𝑋 ∈ ran 𝐼 )
9 dihsmsprn.t ( 𝜑𝑇𝑉 )
10 eqid ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
11 1 2 3 4 5 6 10 7 8 9 dihjat1 ( 𝜑 → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) )
12 1 2 6 3 dihrnss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋𝑉 )
13 7 8 12 syl2anc ( 𝜑𝑋𝑉 )
14 1 2 7 dvhlmod ( 𝜑𝑈 ∈ LMod )
15 9 snssd ( 𝜑 → { 𝑇 } ⊆ 𝑉 )
16 3 5 lspssv ( ( 𝑈 ∈ LMod ∧ { 𝑇 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 )
17 14 15 16 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 )
18 1 6 2 3 10 djhcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝑉 ∧ ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 ) ) → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 )
19 7 13 17 18 syl12anc ( 𝜑 → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 )
20 11 19 eqeltrrd ( 𝜑 → ( 𝑋 ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 )