Step |
Hyp |
Ref |
Expression |
1 |
|
dihsmsprn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dihsmsprn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dihsmsprn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
dihsmsprn.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
5 |
|
dihsmsprn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
6 |
|
dihsmsprn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
dihsmsprn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dihsmsprn.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
9 |
|
dihsmsprn.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
1 2 3 4 5 6 10 7 8 9
|
dihjat1 |
⊢ ( 𝜑 → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ) |
12 |
1 2 6 3
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ 𝑉 ) |
13 |
7 8 12
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
14 |
1 2 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
15 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑇 } ⊆ 𝑉 ) |
16 |
3 5
|
lspssv |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑇 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 ) |
17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 ) |
18 |
1 6 2 3 10
|
djhcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ⊆ 𝑉 ∧ ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 ) ) → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 ) |
19 |
7 13 17 18
|
syl12anc |
⊢ ( 𝜑 → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 ) |
20 |
11 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 ) |