| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihsmsprn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dihsmsprn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dihsmsprn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dihsmsprn.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 5 |
|
dihsmsprn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 6 |
|
dihsmsprn.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dihsmsprn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
dihsmsprn.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
| 9 |
|
dihsmsprn.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
| 10 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
1 2 3 4 5 6 10 7 8 9
|
dihjat1 |
⊢ ( 𝜑 → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) = ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ) |
| 12 |
1 2 6 3
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → 𝑋 ⊆ 𝑉 ) |
| 13 |
7 8 12
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 14 |
1 2 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 15 |
9
|
snssd |
⊢ ( 𝜑 → { 𝑇 } ⊆ 𝑉 ) |
| 16 |
3 5
|
lspssv |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑇 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 ) |
| 18 |
1 6 2 3 10
|
djhcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ⊆ 𝑉 ∧ ( 𝑁 ‘ { 𝑇 } ) ⊆ 𝑉 ) ) → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 ) |
| 19 |
7 13 17 18
|
syl12anc |
⊢ ( 𝜑 → ( 𝑋 ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 ) |
| 20 |
11 19
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( 𝑁 ‘ { 𝑇 } ) ) ∈ ran 𝐼 ) |