| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihsmsprn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dihsmsprn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dihsmsprn.v |
|- V = ( Base ` U ) |
| 4 |
|
dihsmsprn.p |
|- .(+) = ( LSSum ` U ) |
| 5 |
|
dihsmsprn.n |
|- N = ( LSpan ` U ) |
| 6 |
|
dihsmsprn.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
dihsmsprn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
dihsmsprn.x |
|- ( ph -> X e. ran I ) |
| 9 |
|
dihsmsprn.t |
|- ( ph -> T e. V ) |
| 10 |
|
eqid |
|- ( ( joinH ` K ) ` W ) = ( ( joinH ` K ) ` W ) |
| 11 |
1 2 3 4 5 6 10 7 8 9
|
dihjat1 |
|- ( ph -> ( X ( ( joinH ` K ) ` W ) ( N ` { T } ) ) = ( X .(+) ( N ` { T } ) ) ) |
| 12 |
1 2 6 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ V ) |
| 13 |
7 8 12
|
syl2anc |
|- ( ph -> X C_ V ) |
| 14 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 15 |
9
|
snssd |
|- ( ph -> { T } C_ V ) |
| 16 |
3 5
|
lspssv |
|- ( ( U e. LMod /\ { T } C_ V ) -> ( N ` { T } ) C_ V ) |
| 17 |
14 15 16
|
syl2anc |
|- ( ph -> ( N ` { T } ) C_ V ) |
| 18 |
1 6 2 3 10
|
djhcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X C_ V /\ ( N ` { T } ) C_ V ) ) -> ( X ( ( joinH ` K ) ` W ) ( N ` { T } ) ) e. ran I ) |
| 19 |
7 13 17 18
|
syl12anc |
|- ( ph -> ( X ( ( joinH ` K ) ` W ) ( N ` { T } ) ) e. ran I ) |
| 20 |
11 19
|
eqeltrrd |
|- ( ph -> ( X .(+) ( N ` { T } ) ) e. ran I ) |