Metamath Proof Explorer


Theorem dihjat2

Description: The subspace sum of a closed subspace and an atom is the same as their subspace join. (Contributed by NM, 1-Oct-2014)

Ref Expression
Hypotheses dihjat2.h H = LHyp K
dihjat2.i I = DIsoH K W
dihjat2.j ˙ = joinH K W
dihjat2.u U = DVecH K W
dihjat2.p ˙ = LSSum U
dihjat2.a A = LSAtoms U
dihjat2.k φ K HL W H
dihjat2.x φ X ran I
dihjat2.q φ Q A
Assertion dihjat2 φ X ˙ Q = X ˙ Q

Proof

Step Hyp Ref Expression
1 dihjat2.h H = LHyp K
2 dihjat2.i I = DIsoH K W
3 dihjat2.j ˙ = joinH K W
4 dihjat2.u U = DVecH K W
5 dihjat2.p ˙ = LSSum U
6 dihjat2.a A = LSAtoms U
7 dihjat2.k φ K HL W H
8 dihjat2.x φ X ran I
9 dihjat2.q φ Q A
10 eqid Base U = Base U
11 eqid LSpan U = LSpan U
12 7 adantr φ v Base U K HL W H
13 8 adantr φ v Base U X ran I
14 simpr φ v Base U v Base U
15 1 4 10 5 11 2 3 12 13 14 dihjat1 φ v Base U X ˙ LSpan U v = X ˙ LSpan U v
16 15 adantr φ v Base U Q = LSpan U v X ˙ LSpan U v = X ˙ LSpan U v
17 oveq2 Q = LSpan U v X ˙ Q = X ˙ LSpan U v
18 17 adantl φ v Base U Q = LSpan U v X ˙ Q = X ˙ LSpan U v
19 oveq2 Q = LSpan U v X ˙ Q = X ˙ LSpan U v
20 19 adantl φ v Base U Q = LSpan U v X ˙ Q = X ˙ LSpan U v
21 16 18 20 3eqtr4d φ v Base U Q = LSpan U v X ˙ Q = X ˙ Q
22 1 4 7 dvhlmod φ U LMod
23 10 11 6 islsati U LMod Q A v Base U Q = LSpan U v
24 22 9 23 syl2anc φ v Base U Q = LSpan U v
25 21 24 r19.29a φ X ˙ Q = X ˙ Q