Metamath Proof Explorer


Theorem dihjat3

Description: Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dihjat3.b
|- B = ( Base ` K )
dihjat3.h
|- H = ( LHyp ` K )
dihjat3.j
|- .\/ = ( join ` K )
dihjat3.a
|- A = ( Atoms ` K )
dihjat3.u
|- U = ( ( DVecH ` K ) ` W )
dihjat3.s
|- .(+) = ( LSSum ` U )
dihjat3.i
|- I = ( ( DIsoH ` K ) ` W )
dihjat3.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dihjat3.x
|- ( ph -> X e. B )
dihjat3.p
|- ( ph -> P e. A )
Assertion dihjat3
|- ( ph -> ( I ` ( X .\/ P ) ) = ( ( I ` X ) .(+) ( I ` P ) ) )

Proof

Step Hyp Ref Expression
1 dihjat3.b
 |-  B = ( Base ` K )
2 dihjat3.h
 |-  H = ( LHyp ` K )
3 dihjat3.j
 |-  .\/ = ( join ` K )
4 dihjat3.a
 |-  A = ( Atoms ` K )
5 dihjat3.u
 |-  U = ( ( DVecH ` K ) ` W )
6 dihjat3.s
 |-  .(+) = ( LSSum ` U )
7 dihjat3.i
 |-  I = ( ( DIsoH ` K ) ` W )
8 dihjat3.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 dihjat3.x
 |-  ( ph -> X e. B )
10 dihjat3.p
 |-  ( ph -> P e. A )
11 1 4 atbase
 |-  ( P e. A -> P e. B )
12 10 11 syl
 |-  ( ph -> P e. B )
13 eqid
 |-  ( ( joinH ` K ) ` W ) = ( ( joinH ` K ) ` W )
14 1 3 2 7 13 djhlj
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ P e. B ) ) -> ( I ` ( X .\/ P ) ) = ( ( I ` X ) ( ( joinH ` K ) ` W ) ( I ` P ) ) )
15 8 9 12 14 syl12anc
 |-  ( ph -> ( I ` ( X .\/ P ) ) = ( ( I ` X ) ( ( joinH ` K ) ` W ) ( I ` P ) ) )
16 eqid
 |-  ( LSAtoms ` U ) = ( LSAtoms ` U )
17 1 2 7 dihcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ran I )
18 8 9 17 syl2anc
 |-  ( ph -> ( I ` X ) e. ran I )
19 4 2 5 7 16 dihatlat
 |-  ( ( ( K e. HL /\ W e. H ) /\ P e. A ) -> ( I ` P ) e. ( LSAtoms ` U ) )
20 8 10 19 syl2anc
 |-  ( ph -> ( I ` P ) e. ( LSAtoms ` U ) )
21 2 7 13 5 6 16 8 18 20 dihjat2
 |-  ( ph -> ( ( I ` X ) ( ( joinH ` K ) ` W ) ( I ` P ) ) = ( ( I ` X ) .(+) ( I ` P ) ) )
22 15 21 eqtrd
 |-  ( ph -> ( I ` ( X .\/ P ) ) = ( ( I ` X ) .(+) ( I ` P ) ) )