Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat4.j |
|- .\/ = ( join ` K ) |
2 |
|
dihjat4.h |
|- H = ( LHyp ` K ) |
3 |
|
dihjat4.i |
|- I = ( ( DIsoH ` K ) ` W ) |
4 |
|
dihjat4.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dihjat4.s |
|- .(+) = ( LSSum ` U ) |
6 |
|
dihjat4.a |
|- A = ( LSAtoms ` U ) |
7 |
|
dihjat4.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
dihjat4.x |
|- ( ph -> X e. ran I ) |
9 |
|
dihjat4.q |
|- ( ph -> Q e. A ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
12 |
10 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
13 |
7 8 12
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
14 |
11 2 4 3 6
|
dihlatat |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. A ) -> ( `' I ` Q ) e. ( Atoms ` K ) ) |
15 |
7 9 14
|
syl2anc |
|- ( ph -> ( `' I ` Q ) e. ( Atoms ` K ) ) |
16 |
10 2 1 11 4 5 3 7 13 15
|
dihjat3 |
|- ( ph -> ( I ` ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) = ( ( I ` ( `' I ` X ) ) .(+) ( I ` ( `' I ` Q ) ) ) ) |
17 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( I ` ( `' I ` X ) ) = X ) |
18 |
7 8 17
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` X ) ) = X ) |
19 |
2 4 3 6
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. A ) -> Q e. ran I ) |
20 |
7 9 19
|
syl2anc |
|- ( ph -> Q e. ran I ) |
21 |
2 3
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. ran I ) -> ( I ` ( `' I ` Q ) ) = Q ) |
22 |
7 20 21
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` Q ) ) = Q ) |
23 |
18 22
|
oveq12d |
|- ( ph -> ( ( I ` ( `' I ` X ) ) .(+) ( I ` ( `' I ` Q ) ) ) = ( X .(+) Q ) ) |
24 |
16 23
|
eqtr2d |
|- ( ph -> ( X .(+) Q ) = ( I ` ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) ) |