| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjat4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 2 |
|
dihjat4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dihjat4.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dihjat4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dihjat4.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 6 |
|
dihjat4.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 7 |
|
dihjat4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
dihjat4.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
| 9 |
|
dihjat4.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 11 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 12 |
10 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
7 8 12
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
11 2 4 3 6
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → ( ◡ 𝐼 ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 15 |
7 9 14
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 16 |
10 2 1 11 4 5 3 7 13 15
|
dihjat3 |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊕ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) |
| 17 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 18 |
7 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
| 19 |
2 4 3 6
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ran 𝐼 ) |
| 20 |
7 9 19
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ran 𝐼 ) |
| 21 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) = 𝑄 ) |
| 22 |
7 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) = 𝑄 ) |
| 23 |
18 22
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊕ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) ) = ( 𝑋 ⊕ 𝑄 ) ) |
| 24 |
16 23
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑄 ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) |