Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
dihjat4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihjat4.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dihjat4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dihjat4.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
6 |
|
dihjat4.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
7 |
|
dihjat4.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dihjat4.x |
⊢ ( 𝜑 → 𝑋 ∈ ran 𝐼 ) |
9 |
|
dihjat4.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
12 |
10 2 3
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
7 8 12
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
11 2 4 3 6
|
dihlatat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → ( ◡ 𝐼 ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
15 |
7 9 14
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ 𝑄 ) ∈ ( Atoms ‘ 𝐾 ) ) |
16 |
10 2 1 11 4 5 3 7 13 15
|
dihjat3 |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) = ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊕ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) |
17 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
18 |
7 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) = 𝑋 ) |
19 |
2 4 3 6
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ran 𝐼 ) |
20 |
7 9 19
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ ran 𝐼 ) |
21 |
2 3
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑄 ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) = 𝑄 ) |
22 |
7 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) = 𝑄 ) |
23 |
18 22
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑋 ) ) ⊕ ( 𝐼 ‘ ( ◡ 𝐼 ‘ 𝑄 ) ) ) = ( 𝑋 ⊕ 𝑄 ) ) |
24 |
16 23
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑋 ⊕ 𝑄 ) = ( 𝐼 ‘ ( ( ◡ 𝐼 ‘ 𝑋 ) ∨ ( ◡ 𝐼 ‘ 𝑄 ) ) ) ) |