Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjat3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dihjat3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
dihjat3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
dihjat3.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dihjat3.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
7 |
|
dihjat3.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjat3.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dihjat3.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
10 |
|
dihjat3.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
11 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
1 3 2 7 13
|
djhlj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼 ‘ 𝑃 ) ) ) |
15 |
8 9 12 14
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼 ‘ 𝑃 ) ) ) |
16 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
17 |
1 2 7
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
18 |
8 9 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
19 |
4 2 5 7 16
|
dihatlat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
20 |
8 10 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
21 |
2 7 13 5 6 16 8 18 20
|
dihjat2 |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼 ‘ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |
22 |
15 21
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑃 ) ) = ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑃 ) ) ) |