Metamath Proof Explorer


Theorem dihjat3

Description: Isomorphism H of lattice join with an atom. (Contributed by NM, 25-Apr-2015)

Ref Expression
Hypotheses dihjat3.b 𝐵 = ( Base ‘ 𝐾 )
dihjat3.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjat3.j = ( join ‘ 𝐾 )
dihjat3.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjat3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjat3.s = ( LSSum ‘ 𝑈 )
dihjat3.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihjat3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihjat3.x ( 𝜑𝑋𝐵 )
dihjat3.p ( 𝜑𝑃𝐴 )
Assertion dihjat3 ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 dihjat3.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjat3.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihjat3.j = ( join ‘ 𝐾 )
4 dihjat3.a 𝐴 = ( Atoms ‘ 𝐾 )
5 dihjat3.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dihjat3.s = ( LSSum ‘ 𝑈 )
7 dihjat3.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjat3.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dihjat3.x ( 𝜑𝑋𝐵 )
10 dihjat3.p ( 𝜑𝑃𝐴 )
11 1 4 atbase ( 𝑃𝐴𝑃𝐵 )
12 10 11 syl ( 𝜑𝑃𝐵 )
13 eqid ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
14 1 3 2 7 13 djhlj ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑃𝐵 ) ) → ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( ( 𝐼𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼𝑃 ) ) )
15 8 9 12 14 syl12anc ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( ( 𝐼𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼𝑃 ) ) )
16 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
17 1 2 7 dihcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ∈ ran 𝐼 )
18 8 9 17 syl2anc ( 𝜑 → ( 𝐼𝑋 ) ∈ ran 𝐼 )
19 4 2 5 7 16 dihatlat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴 ) → ( 𝐼𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) )
20 8 10 19 syl2anc ( 𝜑 → ( 𝐼𝑃 ) ∈ ( LSAtoms ‘ 𝑈 ) )
21 2 7 13 5 6 16 8 18 20 dihjat2 ( 𝜑 → ( ( 𝐼𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼𝑃 ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) )
22 15 21 eqtrd ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑃 ) ) = ( ( 𝐼𝑋 ) ( 𝐼𝑃 ) ) )