| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihjat6.j |
|- .\/ = ( join ` K ) |
| 2 |
|
dihjat6.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dihjat6.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
dihjat6.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dihjat6.s |
|- .(+) = ( LSSum ` U ) |
| 6 |
|
dihjat6.a |
|- A = ( LSAtoms ` U ) |
| 7 |
|
dihjat6.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
dihjat6.x |
|- ( ph -> X e. ran I ) |
| 9 |
|
dihjat6.q |
|- ( ph -> Q e. A ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
dihjat4 |
|- ( ph -> ( X .(+) Q ) = ( I ` ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( `' I ` ( X .(+) Q ) ) = ( `' I ` ( I ` ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) ) ) |
| 12 |
7
|
simpld |
|- ( ph -> K e. HL ) |
| 13 |
12
|
hllatd |
|- ( ph -> K e. Lat ) |
| 14 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 15 |
14 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 16 |
7 8 15
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
| 17 |
2 4 3 6
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. A ) -> Q e. ran I ) |
| 18 |
7 9 17
|
syl2anc |
|- ( ph -> Q e. ran I ) |
| 19 |
14 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Q e. ran I ) -> ( `' I ` Q ) e. ( Base ` K ) ) |
| 20 |
7 18 19
|
syl2anc |
|- ( ph -> ( `' I ` Q ) e. ( Base ` K ) ) |
| 21 |
14 1
|
latjcl |
|- ( ( K e. Lat /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Q ) e. ( Base ` K ) ) -> ( ( `' I ` X ) .\/ ( `' I ` Q ) ) e. ( Base ` K ) ) |
| 22 |
13 16 20 21
|
syl3anc |
|- ( ph -> ( ( `' I ` X ) .\/ ( `' I ` Q ) ) e. ( Base ` K ) ) |
| 23 |
14 2 3
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I ` X ) .\/ ( `' I ` Q ) ) e. ( Base ` K ) ) -> ( `' I ` ( I ` ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) ) = ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) |
| 24 |
7 22 23
|
syl2anc |
|- ( ph -> ( `' I ` ( I ` ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) ) = ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) |
| 25 |
11 24
|
eqtrd |
|- ( ph -> ( `' I ` ( X .(+) Q ) ) = ( ( `' I ` X ) .\/ ( `' I ` Q ) ) ) |