Step |
Hyp |
Ref |
Expression |
1 |
|
dihjat5.b |
|- B = ( Base ` K ) |
2 |
|
dihjat5.h |
|- H = ( LHyp ` K ) |
3 |
|
dihjat5.j |
|- .\/ = ( join ` K ) |
4 |
|
dihjat5.a |
|- A = ( Atoms ` K ) |
5 |
|
dihjat5.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dihjat5.s |
|- .(+) = ( LSSum ` U ) |
7 |
|
dihjat5.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihjat5.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dihjat5.x |
|- ( ph -> X e. B ) |
10 |
|
dihjat5.p |
|- ( ph -> P e. A ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
dihjat3 |
|- ( ph -> ( I ` ( X .\/ P ) ) = ( ( I ` X ) .(+) ( I ` P ) ) ) |
12 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
13 |
1 2 7
|
dihcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ran I ) |
14 |
8 9 13
|
syl2anc |
|- ( ph -> ( I ` X ) e. ran I ) |
15 |
4 2 5 7 12
|
dihatlat |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A ) -> ( I ` P ) e. ( LSAtoms ` U ) ) |
16 |
8 10 15
|
syl2anc |
|- ( ph -> ( I ` P ) e. ( LSAtoms ` U ) ) |
17 |
2 7 5 6 12 8 14 16
|
dihsmatrn |
|- ( ph -> ( ( I ` X ) .(+) ( I ` P ) ) e. ran I ) |
18 |
2 7
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( I ` X ) .(+) ( I ` P ) ) e. ran I ) -> ( I ` ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) = ( ( I ` X ) .(+) ( I ` P ) ) ) |
19 |
8 17 18
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) = ( ( I ` X ) .(+) ( I ` P ) ) ) |
20 |
11 19
|
eqtr4d |
|- ( ph -> ( I ` ( X .\/ P ) ) = ( I ` ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) ) |
21 |
8
|
simpld |
|- ( ph -> K e. HL ) |
22 |
21
|
hllatd |
|- ( ph -> K e. Lat ) |
23 |
1 4
|
atbase |
|- ( P e. A -> P e. B ) |
24 |
10 23
|
syl |
|- ( ph -> P e. B ) |
25 |
1 3
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( X .\/ P ) e. B ) |
26 |
22 9 24 25
|
syl3anc |
|- ( ph -> ( X .\/ P ) e. B ) |
27 |
1 2 7
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( I ` X ) .(+) ( I ` P ) ) e. ran I ) -> ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) e. B ) |
28 |
8 17 27
|
syl2anc |
|- ( ph -> ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) e. B ) |
29 |
1 2 7
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X .\/ P ) e. B /\ ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) e. B ) -> ( ( I ` ( X .\/ P ) ) = ( I ` ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) <-> ( X .\/ P ) = ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) ) |
30 |
8 26 28 29
|
syl3anc |
|- ( ph -> ( ( I ` ( X .\/ P ) ) = ( I ` ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) <-> ( X .\/ P ) = ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) ) |
31 |
20 30
|
mpbid |
|- ( ph -> ( X .\/ P ) = ( `' I ` ( ( I ` X ) .(+) ( I ` P ) ) ) ) |