| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dochkrsm.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | dochkrsm.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 3 |  | dochkrsm.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 4 |  | dochkrsm.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | dochkrsm.p |  |-  .(+) = ( LSSum ` U ) | 
						
							| 6 |  | dochkrsm.f |  |-  F = ( LFnl ` U ) | 
						
							| 7 |  | dochkrsm.l |  |-  L = ( LKer ` U ) | 
						
							| 8 |  | dochkrsm.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | dochkrsm.x |  |-  ( ph -> X e. ran I ) | 
						
							| 10 |  | dochkrsm.g |  |-  ( ph -> G e. F ) | 
						
							| 11 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 12 | 8 | adantr |  |-  ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 | 9 | adantr |  |-  ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> X e. ran I ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) | 
						
							| 15 | 1 2 4 5 11 12 13 14 | dihsmatrn |  |-  ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) e. ran I ) | 
						
							| 16 |  | oveq2 |  |-  ( ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) = ( X .(+) { ( 0g ` U ) } ) ) | 
						
							| 17 | 1 4 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 18 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 19 | 1 4 2 18 | dihrnlss |  |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) ) | 
						
							| 20 | 8 9 19 | syl2anc |  |-  ( ph -> X e. ( LSubSp ` U ) ) | 
						
							| 21 | 18 | lsssubg |  |-  ( ( U e. LMod /\ X e. ( LSubSp ` U ) ) -> X e. ( SubGrp ` U ) ) | 
						
							| 22 | 17 20 21 | syl2anc |  |-  ( ph -> X e. ( SubGrp ` U ) ) | 
						
							| 23 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 24 | 23 5 | lsm01 |  |-  ( X e. ( SubGrp ` U ) -> ( X .(+) { ( 0g ` U ) } ) = X ) | 
						
							| 25 | 22 24 | syl |  |-  ( ph -> ( X .(+) { ( 0g ` U ) } ) = X ) | 
						
							| 26 | 16 25 | sylan9eqr |  |-  ( ( ph /\ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) = X ) | 
						
							| 27 | 9 | adantr |  |-  ( ( ph /\ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) -> X e. ran I ) | 
						
							| 28 | 26 27 | eqeltrd |  |-  ( ( ph /\ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) e. ran I ) | 
						
							| 29 | 1 3 4 23 11 6 7 8 10 | dochsat0 |  |-  ( ph -> ( ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) \/ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) ) | 
						
							| 30 | 15 28 29 | mpjaodan |  |-  ( ph -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) e. ran I ) |