| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochkrsm.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochkrsm.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 3 |
|
dochkrsm.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 4 |
|
dochkrsm.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dochkrsm.p |
|- .(+) = ( LSSum ` U ) |
| 6 |
|
dochkrsm.f |
|- F = ( LFnl ` U ) |
| 7 |
|
dochkrsm.l |
|- L = ( LKer ` U ) |
| 8 |
|
dochkrsm.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
dochkrsm.x |
|- ( ph -> X e. ran I ) |
| 10 |
|
dochkrsm.g |
|- ( ph -> G e. F ) |
| 11 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 12 |
8
|
adantr |
|- ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
9
|
adantr |
|- ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> X e. ran I ) |
| 14 |
|
simpr |
|- ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) |
| 15 |
1 2 4 5 11 12 13 14
|
dihsmatrn |
|- ( ( ph /\ ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) ) -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) e. ran I ) |
| 16 |
|
oveq2 |
|- ( ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) = ( X .(+) { ( 0g ` U ) } ) ) |
| 17 |
1 4 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 18 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 19 |
1 4 2 18
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) ) |
| 20 |
8 9 19
|
syl2anc |
|- ( ph -> X e. ( LSubSp ` U ) ) |
| 21 |
18
|
lsssubg |
|- ( ( U e. LMod /\ X e. ( LSubSp ` U ) ) -> X e. ( SubGrp ` U ) ) |
| 22 |
17 20 21
|
syl2anc |
|- ( ph -> X e. ( SubGrp ` U ) ) |
| 23 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 24 |
23 5
|
lsm01 |
|- ( X e. ( SubGrp ` U ) -> ( X .(+) { ( 0g ` U ) } ) = X ) |
| 25 |
22 24
|
syl |
|- ( ph -> ( X .(+) { ( 0g ` U ) } ) = X ) |
| 26 |
16 25
|
sylan9eqr |
|- ( ( ph /\ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) = X ) |
| 27 |
9
|
adantr |
|- ( ( ph /\ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) -> X e. ran I ) |
| 28 |
26 27
|
eqeltrd |
|- ( ( ph /\ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) e. ran I ) |
| 29 |
1 3 4 23 11 6 7 8 10
|
dochsat0 |
|- ( ph -> ( ( ._|_ ` ( L ` G ) ) e. ( LSAtoms ` U ) \/ ( ._|_ ` ( L ` G ) ) = { ( 0g ` U ) } ) ) |
| 30 |
15 28 29
|
mpjaodan |
|- ( ph -> ( X .(+) ( ._|_ ` ( L ` G ) ) ) e. ran I ) |