Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidat.h |
|- H = ( LHyp ` K ) |
2 |
|
dochexmidat.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochexmidat.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochexmidat.v |
|- V = ( Base ` U ) |
5 |
|
dochexmidat.z |
|- .0. = ( 0g ` U ) |
6 |
|
dochexmidat.r |
|- N = ( LSpan ` U ) |
7 |
|
dochexmidat.p |
|- .(+) = ( LSSum ` U ) |
8 |
|
dochexmidat.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dochexmidat.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
10 |
1 2 3 4 5 8 9
|
dochnel |
|- ( ph -> -. X e. ( ._|_ ` { X } ) ) |
11 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
12 |
1 3 8
|
dvhlvec |
|- ( ph -> U e. LVec ) |
13 |
1 2 3 4 5 11 8 9
|
dochsnshp |
|- ( ph -> ( ._|_ ` { X } ) e. ( LSHyp ` U ) ) |
14 |
9
|
eldifad |
|- ( ph -> X e. V ) |
15 |
4 6 7 11 12 13 14
|
lshpnelb |
|- ( ph -> ( -. X e. ( ._|_ ` { X } ) <-> ( ( ._|_ ` { X } ) .(+) ( N ` { X } ) ) = V ) ) |
16 |
10 15
|
mpbid |
|- ( ph -> ( ( ._|_ ` { X } ) .(+) ( N ` { X } ) ) = V ) |