Metamath Proof Explorer


Theorem dochexmidat

Description: Special case of excluded middle for the singleton of a vector. (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochexmidat.h 𝐻 = ( LHyp ‘ 𝐾 )
dochexmidat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidat.v 𝑉 = ( Base ‘ 𝑈 )
dochexmidat.z 0 = ( 0g𝑈 )
dochexmidat.r 𝑁 = ( LSpan ‘ 𝑈 )
dochexmidat.p = ( LSSum ‘ 𝑈 )
dochexmidat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochexmidat.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
Assertion dochexmidat ( 𝜑 → ( ( ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 dochexmidat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochexmidat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochexmidat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochexmidat.v 𝑉 = ( Base ‘ 𝑈 )
5 dochexmidat.z 0 = ( 0g𝑈 )
6 dochexmidat.r 𝑁 = ( LSpan ‘ 𝑈 )
7 dochexmidat.p = ( LSSum ‘ 𝑈 )
8 dochexmidat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 dochexmidat.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
10 1 2 3 4 5 8 9 dochnel ( 𝜑 → ¬ 𝑋 ∈ ( ‘ { 𝑋 } ) )
11 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
12 1 3 8 dvhlvec ( 𝜑𝑈 ∈ LVec )
13 1 2 3 4 5 11 8 9 dochsnshp ( 𝜑 → ( ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) )
14 9 eldifad ( 𝜑𝑋𝑉 )
15 4 6 7 11 12 13 14 lshpnelb ( 𝜑 → ( ¬ 𝑋 ∈ ( ‘ { 𝑋 } ) ↔ ( ( ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) )
16 10 15 mpbid ( 𝜑 → ( ( ‘ { 𝑋 } ) ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 )