Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidat.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidat.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidat.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dochexmidat.r |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidat.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
dochexmidat.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
10 |
1 2 3 4 5 8 9
|
dochnel |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( ⊥ ‘ { 𝑋 } ) ) |
11 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
12 |
1 3 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
13 |
1 2 3 4 5 11 8 9
|
dochsnshp |
⊢ ( 𝜑 → ( ⊥ ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
14 |
9
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
15 |
4 6 7 11 12 13 14
|
lshpnelb |
⊢ ( 𝜑 → ( ¬ 𝑋 ∈ ( ⊥ ‘ { 𝑋 } ) ↔ ( ( ⊥ ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) ) |
16 |
10 15
|
mpbid |
⊢ ( 𝜑 → ( ( ⊥ ‘ { 𝑋 } ) ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) |