Metamath Proof Explorer


Theorem dochexmidat

Description: Special case of excluded middle for the singleton of a vector. (Contributed by NM, 27-Oct-2014)

Ref Expression
Hypotheses dochexmidat.h H=LHypK
dochexmidat.o ˙=ocHKW
dochexmidat.u U=DVecHKW
dochexmidat.v V=BaseU
dochexmidat.z 0˙=0U
dochexmidat.r N=LSpanU
dochexmidat.p ˙=LSSumU
dochexmidat.k φKHLWH
dochexmidat.x φXV0˙
Assertion dochexmidat φ˙X˙NX=V

Proof

Step Hyp Ref Expression
1 dochexmidat.h H=LHypK
2 dochexmidat.o ˙=ocHKW
3 dochexmidat.u U=DVecHKW
4 dochexmidat.v V=BaseU
5 dochexmidat.z 0˙=0U
6 dochexmidat.r N=LSpanU
7 dochexmidat.p ˙=LSSumU
8 dochexmidat.k φKHLWH
9 dochexmidat.x φXV0˙
10 1 2 3 4 5 8 9 dochnel φ¬X˙X
11 eqid LSHypU=LSHypU
12 1 3 8 dvhlvec φULVec
13 1 2 3 4 5 11 8 9 dochsnshp φ˙XLSHypU
14 9 eldifad φXV
15 4 6 7 11 12 13 14 lshpnelb φ¬X˙X˙X˙NX=V
16 10 15 mpbid φ˙X˙NX=V