Metamath Proof Explorer


Theorem dochexmidlem1

Description: Lemma for dochexmid . Holland's proof implicitly requires q =/= r , which we prove here. (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H=LHypK
dochexmidlem1.o ˙=ocHKW
dochexmidlem1.u U=DVecHKW
dochexmidlem1.v V=BaseU
dochexmidlem1.s S=LSubSpU
dochexmidlem1.n N=LSpanU
dochexmidlem1.p ˙=LSSumU
dochexmidlem1.a A=LSAtomsU
dochexmidlem1.k φKHLWH
dochexmidlem1.x φXS
dochexmidlem1.pp φpA
dochexmidlem1.qq φqA
dochexmidlem1.rr φrA
dochexmidlem1.ql φq˙X
dochexmidlem1.rl φrX
Assertion dochexmidlem1 φqr

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H=LHypK
2 dochexmidlem1.o ˙=ocHKW
3 dochexmidlem1.u U=DVecHKW
4 dochexmidlem1.v V=BaseU
5 dochexmidlem1.s S=LSubSpU
6 dochexmidlem1.n N=LSpanU
7 dochexmidlem1.p ˙=LSSumU
8 dochexmidlem1.a A=LSAtomsU
9 dochexmidlem1.k φKHLWH
10 dochexmidlem1.x φXS
11 dochexmidlem1.pp φpA
12 dochexmidlem1.qq φqA
13 dochexmidlem1.rr φrA
14 dochexmidlem1.ql φq˙X
15 dochexmidlem1.rl φrX
16 eqid 0U=0U
17 1 3 9 dvhlmod φULMod
18 16 8 17 13 lsatn0 φr0U
19 5 8 17 13 lsatlssel φrS
20 16 5 lssle0 ULModrSr0Ur=0U
21 17 19 20 syl2anc φr0Ur=0U
22 21 necon3bbid φ¬r0Ur0U
23 18 22 mpbird φ¬r0U
24 1 3 5 16 2 dochnoncon KHLWHXSX˙X=0U
25 9 10 24 syl2anc φX˙X=0U
26 25 sseq2d φrX˙Xr0U
27 23 26 mtbird φ¬rX˙X
28 sseq1 q=rq˙Xr˙X
29 14 28 syl5ibcom φq=rr˙X
30 29 15 jctild φq=rrXr˙X
31 ssin rXr˙XrX˙X
32 30 31 imbitrdi φq=rrX˙X
33 32 necon3bd φ¬rX˙Xqr
34 27 33 mpd φqr