Description: Lemma for dochexmid . Holland's proof implicitly requires q =/= r , which we prove here. (Contributed by NM, 14-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochexmidlem1.h | |
|
dochexmidlem1.o | |
||
dochexmidlem1.u | |
||
dochexmidlem1.v | |
||
dochexmidlem1.s | |
||
dochexmidlem1.n | |
||
dochexmidlem1.p | |
||
dochexmidlem1.a | |
||
dochexmidlem1.k | |
||
dochexmidlem1.x | |
||
dochexmidlem1.pp | |
||
dochexmidlem1.qq | |
||
dochexmidlem1.rr | |
||
dochexmidlem1.ql | |
||
dochexmidlem1.rl | |
||
Assertion | dochexmidlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochexmidlem1.h | |
|
2 | dochexmidlem1.o | |
|
3 | dochexmidlem1.u | |
|
4 | dochexmidlem1.v | |
|
5 | dochexmidlem1.s | |
|
6 | dochexmidlem1.n | |
|
7 | dochexmidlem1.p | |
|
8 | dochexmidlem1.a | |
|
9 | dochexmidlem1.k | |
|
10 | dochexmidlem1.x | |
|
11 | dochexmidlem1.pp | |
|
12 | dochexmidlem1.qq | |
|
13 | dochexmidlem1.rr | |
|
14 | dochexmidlem1.ql | |
|
15 | dochexmidlem1.rl | |
|
16 | eqid | |
|
17 | 1 3 9 | dvhlmod | |
18 | 16 8 17 13 | lsatn0 | |
19 | 5 8 17 13 | lsatlssel | |
20 | 16 5 | lssle0 | |
21 | 17 19 20 | syl2anc | |
22 | 21 | necon3bbid | |
23 | 18 22 | mpbird | |
24 | 1 3 5 16 2 | dochnoncon | |
25 | 9 10 24 | syl2anc | |
26 | 25 | sseq2d | |
27 | 23 26 | mtbird | |
28 | sseq1 | |
|
29 | 14 28 | syl5ibcom | |
30 | 29 15 | jctild | |
31 | ssin | |
|
32 | 30 31 | imbitrdi | |
33 | 32 | necon3bd | |
34 | 27 33 | mpd | |