Metamath Proof Explorer


Theorem dochexmidlem2

Description: Lemma for dochexmid . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem2.pp φ p A
dochexmidlem2.qq φ q A
dochexmidlem2.rr φ r A
dochexmidlem2.ql φ q ˙ X
dochexmidlem2.rl φ r X
dochexmidlem2.pl φ p r ˙ q
Assertion dochexmidlem2 φ p X ˙ ˙ X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem2.pp φ p A
12 dochexmidlem2.qq φ q A
13 dochexmidlem2.rr φ r A
14 dochexmidlem2.ql φ q ˙ X
15 dochexmidlem2.rl φ r X
16 dochexmidlem2.pl φ p r ˙ q
17 1 3 9 dvhlmod φ U LMod
18 5 lsssssubg U LMod S SubGrp U
19 17 18 syl φ S SubGrp U
20 19 10 sseldd φ X SubGrp U
21 4 5 lssss X S X V
22 10 21 syl φ X V
23 1 3 4 5 2 dochlss K HL W H X V ˙ X S
24 9 22 23 syl2anc φ ˙ X S
25 19 24 sseldd φ ˙ X SubGrp U
26 7 lsmless12 X SubGrp U ˙ X SubGrp U r X q ˙ X r ˙ q X ˙ ˙ X
27 20 25 15 14 26 syl22anc φ r ˙ q X ˙ ˙ X
28 16 27 sstrd φ p X ˙ ˙ X