Metamath Proof Explorer


Theorem dochexmidlem2

Description: Lemma for dochexmid . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h
|- H = ( LHyp ` K )
dochexmidlem1.o
|- ._|_ = ( ( ocH ` K ) ` W )
dochexmidlem1.u
|- U = ( ( DVecH ` K ) ` W )
dochexmidlem1.v
|- V = ( Base ` U )
dochexmidlem1.s
|- S = ( LSubSp ` U )
dochexmidlem1.n
|- N = ( LSpan ` U )
dochexmidlem1.p
|- .(+) = ( LSSum ` U )
dochexmidlem1.a
|- A = ( LSAtoms ` U )
dochexmidlem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dochexmidlem1.x
|- ( ph -> X e. S )
dochexmidlem2.pp
|- ( ph -> p e. A )
dochexmidlem2.qq
|- ( ph -> q e. A )
dochexmidlem2.rr
|- ( ph -> r e. A )
dochexmidlem2.ql
|- ( ph -> q C_ ( ._|_ ` X ) )
dochexmidlem2.rl
|- ( ph -> r C_ X )
dochexmidlem2.pl
|- ( ph -> p C_ ( r .(+) q ) )
Assertion dochexmidlem2
|- ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) )

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h
 |-  H = ( LHyp ` K )
2 dochexmidlem1.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 dochexmidlem1.u
 |-  U = ( ( DVecH ` K ) ` W )
4 dochexmidlem1.v
 |-  V = ( Base ` U )
5 dochexmidlem1.s
 |-  S = ( LSubSp ` U )
6 dochexmidlem1.n
 |-  N = ( LSpan ` U )
7 dochexmidlem1.p
 |-  .(+) = ( LSSum ` U )
8 dochexmidlem1.a
 |-  A = ( LSAtoms ` U )
9 dochexmidlem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 dochexmidlem1.x
 |-  ( ph -> X e. S )
11 dochexmidlem2.pp
 |-  ( ph -> p e. A )
12 dochexmidlem2.qq
 |-  ( ph -> q e. A )
13 dochexmidlem2.rr
 |-  ( ph -> r e. A )
14 dochexmidlem2.ql
 |-  ( ph -> q C_ ( ._|_ ` X ) )
15 dochexmidlem2.rl
 |-  ( ph -> r C_ X )
16 dochexmidlem2.pl
 |-  ( ph -> p C_ ( r .(+) q ) )
17 1 3 9 dvhlmod
 |-  ( ph -> U e. LMod )
18 5 lsssssubg
 |-  ( U e. LMod -> S C_ ( SubGrp ` U ) )
19 17 18 syl
 |-  ( ph -> S C_ ( SubGrp ` U ) )
20 19 10 sseldd
 |-  ( ph -> X e. ( SubGrp ` U ) )
21 4 5 lssss
 |-  ( X e. S -> X C_ V )
22 10 21 syl
 |-  ( ph -> X C_ V )
23 1 3 4 5 2 dochlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. S )
24 9 22 23 syl2anc
 |-  ( ph -> ( ._|_ ` X ) e. S )
25 19 24 sseldd
 |-  ( ph -> ( ._|_ ` X ) e. ( SubGrp ` U ) )
26 7 lsmless12
 |-  ( ( ( X e. ( SubGrp ` U ) /\ ( ._|_ ` X ) e. ( SubGrp ` U ) ) /\ ( r C_ X /\ q C_ ( ._|_ ` X ) ) ) -> ( r .(+) q ) C_ ( X .(+) ( ._|_ ` X ) ) )
27 20 25 15 14 26 syl22anc
 |-  ( ph -> ( r .(+) q ) C_ ( X .(+) ( ._|_ ` X ) ) )
28 16 27 sstrd
 |-  ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) )