Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
dochexmidlem1.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
3 |
|
dochexmidlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
dochexmidlem1.v |
|- V = ( Base ` U ) |
5 |
|
dochexmidlem1.s |
|- S = ( LSubSp ` U ) |
6 |
|
dochexmidlem1.n |
|- N = ( LSpan ` U ) |
7 |
|
dochexmidlem1.p |
|- .(+) = ( LSSum ` U ) |
8 |
|
dochexmidlem1.a |
|- A = ( LSAtoms ` U ) |
9 |
|
dochexmidlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
dochexmidlem1.x |
|- ( ph -> X e. S ) |
11 |
|
dochexmidlem2.pp |
|- ( ph -> p e. A ) |
12 |
|
dochexmidlem2.qq |
|- ( ph -> q e. A ) |
13 |
|
dochexmidlem2.rr |
|- ( ph -> r e. A ) |
14 |
|
dochexmidlem2.ql |
|- ( ph -> q C_ ( ._|_ ` X ) ) |
15 |
|
dochexmidlem2.rl |
|- ( ph -> r C_ X ) |
16 |
|
dochexmidlem2.pl |
|- ( ph -> p C_ ( r .(+) q ) ) |
17 |
1 3 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
18 |
5
|
lsssssubg |
|- ( U e. LMod -> S C_ ( SubGrp ` U ) ) |
19 |
17 18
|
syl |
|- ( ph -> S C_ ( SubGrp ` U ) ) |
20 |
19 10
|
sseldd |
|- ( ph -> X e. ( SubGrp ` U ) ) |
21 |
4 5
|
lssss |
|- ( X e. S -> X C_ V ) |
22 |
10 21
|
syl |
|- ( ph -> X C_ V ) |
23 |
1 3 4 5 2
|
dochlss |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ V ) -> ( ._|_ ` X ) e. S ) |
24 |
9 22 23
|
syl2anc |
|- ( ph -> ( ._|_ ` X ) e. S ) |
25 |
19 24
|
sseldd |
|- ( ph -> ( ._|_ ` X ) e. ( SubGrp ` U ) ) |
26 |
7
|
lsmless12 |
|- ( ( ( X e. ( SubGrp ` U ) /\ ( ._|_ ` X ) e. ( SubGrp ` U ) ) /\ ( r C_ X /\ q C_ ( ._|_ ` X ) ) ) -> ( r .(+) q ) C_ ( X .(+) ( ._|_ ` X ) ) ) |
27 |
20 25 15 14 26
|
syl22anc |
|- ( ph -> ( r .(+) q ) C_ ( X .(+) ( ._|_ ` X ) ) ) |
28 |
16 27
|
sstrd |
|- ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) ) |