Description: Lemma for dochexmid . Use atom exchange lsatexch1 to swap p and q . (Contributed by NM, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dochexmidlem1.h | |- H = ( LHyp ` K ) |
|
| dochexmidlem1.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
||
| dochexmidlem1.u | |- U = ( ( DVecH ` K ) ` W ) |
||
| dochexmidlem1.v | |- V = ( Base ` U ) |
||
| dochexmidlem1.s | |- S = ( LSubSp ` U ) |
||
| dochexmidlem1.n | |- N = ( LSpan ` U ) |
||
| dochexmidlem1.p | |- .(+) = ( LSSum ` U ) |
||
| dochexmidlem1.a | |- A = ( LSAtoms ` U ) |
||
| dochexmidlem1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
| dochexmidlem1.x | |- ( ph -> X e. S ) |
||
| dochexmidlem3.pp | |- ( ph -> p e. A ) |
||
| dochexmidlem3.qq | |- ( ph -> q e. A ) |
||
| dochexmidlem3.rr | |- ( ph -> r e. A ) |
||
| dochexmidlem3.ql | |- ( ph -> q C_ ( ._|_ ` X ) ) |
||
| dochexmidlem3.rl | |- ( ph -> r C_ X ) |
||
| dochexmidlem3.pl | |- ( ph -> q C_ ( r .(+) p ) ) |
||
| Assertion | dochexmidlem3 | |- ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dochexmidlem1.h | |- H = ( LHyp ` K ) |
|
| 2 | dochexmidlem1.o | |- ._|_ = ( ( ocH ` K ) ` W ) |
|
| 3 | dochexmidlem1.u | |- U = ( ( DVecH ` K ) ` W ) |
|
| 4 | dochexmidlem1.v | |- V = ( Base ` U ) |
|
| 5 | dochexmidlem1.s | |- S = ( LSubSp ` U ) |
|
| 6 | dochexmidlem1.n | |- N = ( LSpan ` U ) |
|
| 7 | dochexmidlem1.p | |- .(+) = ( LSSum ` U ) |
|
| 8 | dochexmidlem1.a | |- A = ( LSAtoms ` U ) |
|
| 9 | dochexmidlem1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
| 10 | dochexmidlem1.x | |- ( ph -> X e. S ) |
|
| 11 | dochexmidlem3.pp | |- ( ph -> p e. A ) |
|
| 12 | dochexmidlem3.qq | |- ( ph -> q e. A ) |
|
| 13 | dochexmidlem3.rr | |- ( ph -> r e. A ) |
|
| 14 | dochexmidlem3.ql | |- ( ph -> q C_ ( ._|_ ` X ) ) |
|
| 15 | dochexmidlem3.rl | |- ( ph -> r C_ X ) |
|
| 16 | dochexmidlem3.pl | |- ( ph -> q C_ ( r .(+) p ) ) |
|
| 17 | 1 3 9 | dvhlvec | |- ( ph -> U e. LVec ) |
| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | dochexmidlem1 | |- ( ph -> q =/= r ) |
| 19 | 7 8 17 12 11 13 16 18 | lsatexch1 | |- ( ph -> p C_ ( r .(+) q ) ) |
| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 | dochexmidlem2 | |- ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) ) |