Metamath Proof Explorer


Theorem dochexmidlem3

Description: Lemma for dochexmid . Use atom exchange lsatexch1 to swap p and q . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h
|- H = ( LHyp ` K )
dochexmidlem1.o
|- ._|_ = ( ( ocH ` K ) ` W )
dochexmidlem1.u
|- U = ( ( DVecH ` K ) ` W )
dochexmidlem1.v
|- V = ( Base ` U )
dochexmidlem1.s
|- S = ( LSubSp ` U )
dochexmidlem1.n
|- N = ( LSpan ` U )
dochexmidlem1.p
|- .(+) = ( LSSum ` U )
dochexmidlem1.a
|- A = ( LSAtoms ` U )
dochexmidlem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
dochexmidlem1.x
|- ( ph -> X e. S )
dochexmidlem3.pp
|- ( ph -> p e. A )
dochexmidlem3.qq
|- ( ph -> q e. A )
dochexmidlem3.rr
|- ( ph -> r e. A )
dochexmidlem3.ql
|- ( ph -> q C_ ( ._|_ ` X ) )
dochexmidlem3.rl
|- ( ph -> r C_ X )
dochexmidlem3.pl
|- ( ph -> q C_ ( r .(+) p ) )
Assertion dochexmidlem3
|- ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) )

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h
 |-  H = ( LHyp ` K )
2 dochexmidlem1.o
 |-  ._|_ = ( ( ocH ` K ) ` W )
3 dochexmidlem1.u
 |-  U = ( ( DVecH ` K ) ` W )
4 dochexmidlem1.v
 |-  V = ( Base ` U )
5 dochexmidlem1.s
 |-  S = ( LSubSp ` U )
6 dochexmidlem1.n
 |-  N = ( LSpan ` U )
7 dochexmidlem1.p
 |-  .(+) = ( LSSum ` U )
8 dochexmidlem1.a
 |-  A = ( LSAtoms ` U )
9 dochexmidlem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 dochexmidlem1.x
 |-  ( ph -> X e. S )
11 dochexmidlem3.pp
 |-  ( ph -> p e. A )
12 dochexmidlem3.qq
 |-  ( ph -> q e. A )
13 dochexmidlem3.rr
 |-  ( ph -> r e. A )
14 dochexmidlem3.ql
 |-  ( ph -> q C_ ( ._|_ ` X ) )
15 dochexmidlem3.rl
 |-  ( ph -> r C_ X )
16 dochexmidlem3.pl
 |-  ( ph -> q C_ ( r .(+) p ) )
17 1 3 9 dvhlvec
 |-  ( ph -> U e. LVec )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 dochexmidlem1
 |-  ( ph -> q =/= r )
19 7 8 17 12 11 13 16 18 lsatexch1
 |-  ( ph -> p C_ ( r .(+) q ) )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 dochexmidlem2
 |-  ( ph -> p C_ ( X .(+) ( ._|_ ` X ) ) )