| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 11 |
|
dochexmidlem3.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
| 12 |
|
dochexmidlem3.qq |
⊢ ( 𝜑 → 𝑞 ∈ 𝐴 ) |
| 13 |
|
dochexmidlem3.rr |
⊢ ( 𝜑 → 𝑟 ∈ 𝐴 ) |
| 14 |
|
dochexmidlem3.ql |
⊢ ( 𝜑 → 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 15 |
|
dochexmidlem3.rl |
⊢ ( 𝜑 → 𝑟 ⊆ 𝑋 ) |
| 16 |
|
dochexmidlem3.pl |
⊢ ( 𝜑 → 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) |
| 17 |
1 3 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
dochexmidlem1 |
⊢ ( 𝜑 → 𝑞 ≠ 𝑟 ) |
| 19 |
7 8 17 12 11 13 16 18
|
lsatexch1 |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑟 ⊕ 𝑞 ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19
|
dochexmidlem2 |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |