Metamath Proof Explorer


Theorem dochexmidlem3

Description: Lemma for dochexmid . Use atom exchange lsatexch1 to swap p and q . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
dochexmidlem1.p = ( LSSum ‘ 𝑈 )
dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochexmidlem1.x ( 𝜑𝑋𝑆 )
dochexmidlem3.pp ( 𝜑𝑝𝐴 )
dochexmidlem3.qq ( 𝜑𝑞𝐴 )
dochexmidlem3.rr ( 𝜑𝑟𝐴 )
dochexmidlem3.ql ( 𝜑𝑞 ⊆ ( 𝑋 ) )
dochexmidlem3.rl ( 𝜑𝑟𝑋 )
dochexmidlem3.pl ( 𝜑𝑞 ⊆ ( 𝑟 𝑝 ) )
Assertion dochexmidlem3 ( 𝜑𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
5 dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
7 dochexmidlem1.p = ( LSSum ‘ 𝑈 )
8 dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 dochexmidlem1.x ( 𝜑𝑋𝑆 )
11 dochexmidlem3.pp ( 𝜑𝑝𝐴 )
12 dochexmidlem3.qq ( 𝜑𝑞𝐴 )
13 dochexmidlem3.rr ( 𝜑𝑟𝐴 )
14 dochexmidlem3.ql ( 𝜑𝑞 ⊆ ( 𝑋 ) )
15 dochexmidlem3.rl ( 𝜑𝑟𝑋 )
16 dochexmidlem3.pl ( 𝜑𝑞 ⊆ ( 𝑟 𝑝 ) )
17 1 3 9 dvhlvec ( 𝜑𝑈 ∈ LVec )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 dochexmidlem1 ( 𝜑𝑞𝑟 )
19 7 8 17 12 11 13 16 18 lsatexch1 ( 𝜑𝑝 ⊆ ( 𝑟 𝑞 ) )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 dochexmidlem2 ( 𝜑𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )