Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
dochexmidlem3.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
12 |
|
dochexmidlem3.qq |
⊢ ( 𝜑 → 𝑞 ∈ 𝐴 ) |
13 |
|
dochexmidlem3.rr |
⊢ ( 𝜑 → 𝑟 ∈ 𝐴 ) |
14 |
|
dochexmidlem3.ql |
⊢ ( 𝜑 → 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) |
15 |
|
dochexmidlem3.rl |
⊢ ( 𝜑 → 𝑟 ⊆ 𝑋 ) |
16 |
|
dochexmidlem3.pl |
⊢ ( 𝜑 → 𝑞 ⊆ ( 𝑟 ⊕ 𝑝 ) ) |
17 |
1 3 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
dochexmidlem1 |
⊢ ( 𝜑 → 𝑞 ≠ 𝑟 ) |
19 |
7 8 17 12 11 13 16 18
|
lsatexch1 |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑟 ⊕ 𝑞 ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19
|
dochexmidlem2 |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |