Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
dochexmidlem2.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
12 |
|
dochexmidlem2.qq |
⊢ ( 𝜑 → 𝑞 ∈ 𝐴 ) |
13 |
|
dochexmidlem2.rr |
⊢ ( 𝜑 → 𝑟 ∈ 𝐴 ) |
14 |
|
dochexmidlem2.ql |
⊢ ( 𝜑 → 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) |
15 |
|
dochexmidlem2.rl |
⊢ ( 𝜑 → 𝑟 ⊆ 𝑋 ) |
16 |
|
dochexmidlem2.pl |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑟 ⊕ 𝑞 ) ) |
17 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
5
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
20 |
19 10
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
21 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
22 |
10 21
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
23 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
24 |
9 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
25 |
19 24
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
26 |
7
|
lsmless12 |
⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑟 ⊕ 𝑞 ) ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
27 |
20 25 15 14 26
|
syl22anc |
⊢ ( 𝜑 → ( 𝑟 ⊕ 𝑞 ) ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
28 |
16 27
|
sstrd |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |