| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochexmidlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochexmidlem1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochexmidlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochexmidlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
dochexmidlem1.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 6 |
|
dochexmidlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
dochexmidlem1.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 8 |
|
dochexmidlem1.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 9 |
|
dochexmidlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
dochexmidlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 11 |
|
dochexmidlem2.pp |
⊢ ( 𝜑 → 𝑝 ∈ 𝐴 ) |
| 12 |
|
dochexmidlem2.qq |
⊢ ( 𝜑 → 𝑞 ∈ 𝐴 ) |
| 13 |
|
dochexmidlem2.rr |
⊢ ( 𝜑 → 𝑟 ∈ 𝐴 ) |
| 14 |
|
dochexmidlem2.ql |
⊢ ( 𝜑 → 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 15 |
|
dochexmidlem2.rl |
⊢ ( 𝜑 → 𝑟 ⊆ 𝑋 ) |
| 16 |
|
dochexmidlem2.pl |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑟 ⊕ 𝑞 ) ) |
| 17 |
1 3 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 18 |
5
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 20 |
19 10
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ) |
| 21 |
4 5
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉 ) |
| 22 |
10 21
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑉 ) |
| 23 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 24 |
9 22 23
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 25 |
19 24
|
sseldd |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 26 |
7
|
lsmless12 |
⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) ∧ ( 𝑟 ⊆ 𝑋 ∧ 𝑞 ⊆ ( ⊥ ‘ 𝑋 ) ) ) → ( 𝑟 ⊕ 𝑞 ) ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 27 |
20 25 15 14 26
|
syl22anc |
⊢ ( 𝜑 → ( 𝑟 ⊕ 𝑞 ) ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |
| 28 |
16 27
|
sstrd |
⊢ ( 𝜑 → 𝑝 ⊆ ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) ) |