Metamath Proof Explorer


Theorem dochexmidlem2

Description: Lemma for dochexmid . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
dochexmidlem1.p = ( LSSum ‘ 𝑈 )
dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochexmidlem1.x ( 𝜑𝑋𝑆 )
dochexmidlem2.pp ( 𝜑𝑝𝐴 )
dochexmidlem2.qq ( 𝜑𝑞𝐴 )
dochexmidlem2.rr ( 𝜑𝑟𝐴 )
dochexmidlem2.ql ( 𝜑𝑞 ⊆ ( 𝑋 ) )
dochexmidlem2.rl ( 𝜑𝑟𝑋 )
dochexmidlem2.pl ( 𝜑𝑝 ⊆ ( 𝑟 𝑞 ) )
Assertion dochexmidlem2 ( 𝜑𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochexmidlem1.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochexmidlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochexmidlem1.v 𝑉 = ( Base ‘ 𝑈 )
5 dochexmidlem1.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 dochexmidlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
7 dochexmidlem1.p = ( LSSum ‘ 𝑈 )
8 dochexmidlem1.a 𝐴 = ( LSAtoms ‘ 𝑈 )
9 dochexmidlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 dochexmidlem1.x ( 𝜑𝑋𝑆 )
11 dochexmidlem2.pp ( 𝜑𝑝𝐴 )
12 dochexmidlem2.qq ( 𝜑𝑞𝐴 )
13 dochexmidlem2.rr ( 𝜑𝑟𝐴 )
14 dochexmidlem2.ql ( 𝜑𝑞 ⊆ ( 𝑋 ) )
15 dochexmidlem2.rl ( 𝜑𝑟𝑋 )
16 dochexmidlem2.pl ( 𝜑𝑝 ⊆ ( 𝑟 𝑞 ) )
17 1 3 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
18 5 lsssssubg ( 𝑈 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑈 ) )
19 17 18 syl ( 𝜑𝑆 ⊆ ( SubGrp ‘ 𝑈 ) )
20 19 10 sseldd ( 𝜑𝑋 ∈ ( SubGrp ‘ 𝑈 ) )
21 4 5 lssss ( 𝑋𝑆𝑋𝑉 )
22 10 21 syl ( 𝜑𝑋𝑉 )
23 1 3 4 5 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉 ) → ( 𝑋 ) ∈ 𝑆 )
24 9 22 23 syl2anc ( 𝜑 → ( 𝑋 ) ∈ 𝑆 )
25 19 24 sseldd ( 𝜑 → ( 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) )
26 7 lsmless12 ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) ∧ ( 𝑟𝑋𝑞 ⊆ ( 𝑋 ) ) ) → ( 𝑟 𝑞 ) ⊆ ( 𝑋 ( 𝑋 ) ) )
27 20 25 15 14 26 syl22anc ( 𝜑 → ( 𝑟 𝑞 ) ⊆ ( 𝑋 ( 𝑋 ) ) )
28 16 27 sstrd ( 𝜑𝑝 ⊆ ( 𝑋 ( 𝑋 ) ) )