Metamath Proof Explorer


Theorem dochexmid

Description: Excluded middle law for closed subspaces, which is equivalent to (and derived from) the orthomodular law dihoml4 . Lemma 3.3(2) in Holland95 p. 215. In our proof, we use the variables X , M , p , q , r in place of Hollands' l, m, P, Q, L respectively. ( pexmidALTN analog.) (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmid.h 𝐻 = ( LHyp ‘ 𝐾 )
dochexmid.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochexmid.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochexmid.v 𝑉 = ( Base ‘ 𝑈 )
dochexmid.s 𝑆 = ( LSubSp ‘ 𝑈 )
dochexmid.p = ( LSSum ‘ 𝑈 )
dochexmid.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochexmid.x ( 𝜑𝑋𝑆 )
dochexmid.c ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
Assertion dochexmid ( 𝜑 → ( 𝑋 ( 𝑋 ) ) = 𝑉 )

Proof

Step Hyp Ref Expression
1 dochexmid.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochexmid.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochexmid.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochexmid.v 𝑉 = ( Base ‘ 𝑈 )
5 dochexmid.s 𝑆 = ( LSubSp ‘ 𝑈 )
6 dochexmid.p = ( LSSum ‘ 𝑈 )
7 dochexmid.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 dochexmid.x ( 𝜑𝑋𝑆 )
9 dochexmid.c ( 𝜑 → ( ‘ ( 𝑋 ) ) = 𝑋 )
10 id ( 𝑋 = { ( 0g𝑈 ) } → 𝑋 = { ( 0g𝑈 ) } )
11 fveq2 ( 𝑋 = { ( 0g𝑈 ) } → ( 𝑋 ) = ( ‘ { ( 0g𝑈 ) } ) )
12 10 11 oveq12d ( 𝑋 = { ( 0g𝑈 ) } → ( 𝑋 ( 𝑋 ) ) = ( { ( 0g𝑈 ) } ( ‘ { ( 0g𝑈 ) } ) ) )
13 1 3 7 dvhlmod ( 𝜑𝑈 ∈ LMod )
14 eqid ( 0g𝑈 ) = ( 0g𝑈 )
15 4 14 lmod0vcl ( 𝑈 ∈ LMod → ( 0g𝑈 ) ∈ 𝑉 )
16 13 15 syl ( 𝜑 → ( 0g𝑈 ) ∈ 𝑉 )
17 16 snssd ( 𝜑 → { ( 0g𝑈 ) } ⊆ 𝑉 )
18 1 3 4 5 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ { ( 0g𝑈 ) } ⊆ 𝑉 ) → ( ‘ { ( 0g𝑈 ) } ) ∈ 𝑆 )
19 7 17 18 syl2anc ( 𝜑 → ( ‘ { ( 0g𝑈 ) } ) ∈ 𝑆 )
20 5 lsssubg ( ( 𝑈 ∈ LMod ∧ ( ‘ { ( 0g𝑈 ) } ) ∈ 𝑆 ) → ( ‘ { ( 0g𝑈 ) } ) ∈ ( SubGrp ‘ 𝑈 ) )
21 13 19 20 syl2anc ( 𝜑 → ( ‘ { ( 0g𝑈 ) } ) ∈ ( SubGrp ‘ 𝑈 ) )
22 14 6 lsm02 ( ( ‘ { ( 0g𝑈 ) } ) ∈ ( SubGrp ‘ 𝑈 ) → ( { ( 0g𝑈 ) } ( ‘ { ( 0g𝑈 ) } ) ) = ( ‘ { ( 0g𝑈 ) } ) )
23 21 22 syl ( 𝜑 → ( { ( 0g𝑈 ) } ( ‘ { ( 0g𝑈 ) } ) ) = ( ‘ { ( 0g𝑈 ) } ) )
24 1 3 2 4 14 doch0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ { ( 0g𝑈 ) } ) = 𝑉 )
25 7 24 syl ( 𝜑 → ( ‘ { ( 0g𝑈 ) } ) = 𝑉 )
26 23 25 eqtrd ( 𝜑 → ( { ( 0g𝑈 ) } ( ‘ { ( 0g𝑈 ) } ) ) = 𝑉 )
27 12 26 sylan9eqr ( ( 𝜑𝑋 = { ( 0g𝑈 ) } ) → ( 𝑋 ( 𝑋 ) ) = 𝑉 )
28 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
29 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
30 7 adantr ( ( 𝜑𝑋 ≠ { ( 0g𝑈 ) } ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
31 8 adantr ( ( 𝜑𝑋 ≠ { ( 0g𝑈 ) } ) → 𝑋𝑆 )
32 simpr ( ( 𝜑𝑋 ≠ { ( 0g𝑈 ) } ) → 𝑋 ≠ { ( 0g𝑈 ) } )
33 9 adantr ( ( 𝜑𝑋 ≠ { ( 0g𝑈 ) } ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
34 1 2 3 4 5 28 6 29 30 31 14 32 33 dochexmidlem8 ( ( 𝜑𝑋 ≠ { ( 0g𝑈 ) } ) → ( 𝑋 ( 𝑋 ) ) = 𝑉 )
35 27 34 pm2.61dane ( 𝜑 → ( 𝑋 ( 𝑋 ) ) = 𝑉 )