Step |
Hyp |
Ref |
Expression |
1 |
|
dochexmid.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dochexmid.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dochexmid.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dochexmid.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
dochexmid.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
6 |
|
dochexmid.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
7 |
|
dochexmid.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
dochexmid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
9 |
|
dochexmid.c |
⊢ ( 𝜑 → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
10 |
|
id |
⊢ ( 𝑋 = { ( 0g ‘ 𝑈 ) } → 𝑋 = { ( 0g ‘ 𝑈 ) } ) |
11 |
|
fveq2 |
⊢ ( 𝑋 = { ( 0g ‘ 𝑈 ) } → ( ⊥ ‘ 𝑋 ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
12 |
10 11
|
oveq12d |
⊢ ( 𝑋 = { ( 0g ‘ 𝑈 ) } → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = ( { ( 0g ‘ 𝑈 ) } ⊕ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) ) |
13 |
1 3 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
15 |
4 14
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
16 |
13 15
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
17 |
16
|
snssd |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ⊆ 𝑉 ) |
18 |
1 3 4 5 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ { ( 0g ‘ 𝑈 ) } ⊆ 𝑉 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ∈ 𝑆 ) |
19 |
7 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ∈ 𝑆 ) |
20 |
5
|
lsssubg |
⊢ ( ( 𝑈 ∈ LMod ∧ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ∈ 𝑆 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
21 |
13 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ∈ ( SubGrp ‘ 𝑈 ) ) |
22 |
14 6
|
lsm02 |
⊢ ( ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ∈ ( SubGrp ‘ 𝑈 ) → ( { ( 0g ‘ 𝑈 ) } ⊕ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( { ( 0g ‘ 𝑈 ) } ⊕ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) |
24 |
1 3 2 4 14
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
25 |
7 24
|
syl |
⊢ ( 𝜑 → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
26 |
23 25
|
eqtrd |
⊢ ( 𝜑 → ( { ( 0g ‘ 𝑈 ) } ⊕ ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ) = 𝑉 ) |
27 |
12 26
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑋 = { ( 0g ‘ 𝑈 ) } ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |
28 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
29 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ { ( 0g ‘ 𝑈 ) } ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ { ( 0g ‘ 𝑈 ) } ) → 𝑋 ∈ 𝑆 ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ { ( 0g ‘ 𝑈 ) } ) → 𝑋 ≠ { ( 0g ‘ 𝑈 ) } ) |
33 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ { ( 0g ‘ 𝑈 ) } ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
34 |
1 2 3 4 5 28 6 29 30 31 14 32 33
|
dochexmidlem8 |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ { ( 0g ‘ 𝑈 ) } ) → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |
35 |
27 34
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑋 ⊕ ( ⊥ ‘ 𝑋 ) ) = 𝑉 ) |