Metamath Proof Explorer


Theorem pexmidALTN

Description: Excluded middle law for closed projective subspaces, which is equivalent to (and derived from) the orthomodular law poml4N . Lemma 3.3(2) in Holland95 p. 215. In our proof, we use the variables X , M , p , q , r in place of Hollands' l, m, P, Q, L respectively. TODO: should we make this obsolete? (Contributed by NM, 3-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidALT.a 𝐴 = ( Atoms ‘ 𝐾 )
pexmidALT.p + = ( +𝑃𝐾 )
pexmidALT.o = ( ⊥𝑃𝐾 )
Assertion pexmidALTN ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( 𝑋 + ( 𝑋 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 pexmidALT.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pexmidALT.p + = ( +𝑃𝐾 )
3 pexmidALT.o = ( ⊥𝑃𝐾 )
4 id ( 𝑋 = ∅ → 𝑋 = ∅ )
5 fveq2 ( 𝑋 = ∅ → ( 𝑋 ) = ( ‘ ∅ ) )
6 4 5 oveq12d ( 𝑋 = ∅ → ( 𝑋 + ( 𝑋 ) ) = ( ∅ + ( ‘ ∅ ) ) )
7 1 3 pol0N ( 𝐾 ∈ HL → ( ‘ ∅ ) = 𝐴 )
8 eqimss ( ( ‘ ∅ ) = 𝐴 → ( ‘ ∅ ) ⊆ 𝐴 )
9 7 8 syl ( 𝐾 ∈ HL → ( ‘ ∅ ) ⊆ 𝐴 )
10 1 2 padd02 ( ( 𝐾 ∈ HL ∧ ( ‘ ∅ ) ⊆ 𝐴 ) → ( ∅ + ( ‘ ∅ ) ) = ( ‘ ∅ ) )
11 9 10 mpdan ( 𝐾 ∈ HL → ( ∅ + ( ‘ ∅ ) ) = ( ‘ ∅ ) )
12 11 7 eqtrd ( 𝐾 ∈ HL → ( ∅ + ( ‘ ∅ ) ) = 𝐴 )
13 12 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( ∅ + ( ‘ ∅ ) ) = 𝐴 )
14 6 13 sylan9eqr ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) ∧ 𝑋 = ∅ ) → ( 𝑋 + ( 𝑋 ) ) = 𝐴 )
15 1 2 3 pexmidlem8N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( ( ‘ ( 𝑋 ) ) = 𝑋𝑋 ≠ ∅ ) ) → ( 𝑋 + ( 𝑋 ) ) = 𝐴 )
16 15 anassrs ( ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋 + ( 𝑋 ) ) = 𝐴 )
17 14 16 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( 𝑋 + ( 𝑋 ) ) = 𝐴 )