Step |
Hyp |
Ref |
Expression |
1 |
|
poml4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
poml4.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
eqcom |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ↔ 𝑌 = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
4 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
6 |
4 1 5 2
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
7 |
6
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
8 |
7
|
eqeq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ↔ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 = ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) → 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
10 |
3 9
|
syl5bi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 → 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
11 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝐾 ∈ HL ) |
12 |
|
hloml |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OML ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝐾 ∈ OML ) |
14 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
15 |
11 14
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝐾 ∈ CLat ) |
16 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑋 ⊆ 𝐴 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
18 |
17 1
|
atssbase |
⊢ 𝐴 ⊆ ( Base ‘ 𝐾 ) |
19 |
16 18
|
sstrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑋 ⊆ ( Base ‘ 𝐾 ) ) |
20 |
17 4
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
21 |
15 19 20
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
22 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑌 ⊆ 𝐴 ) |
23 |
22 18
|
sstrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑌 ⊆ ( Base ‘ 𝐾 ) ) |
24 |
17 4
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑌 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
15 23 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
13 21 25
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( 𝐾 ∈ OML ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) ) |
27 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑋 ⊆ 𝑌 ) |
28 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
29 |
17 28 4
|
lubss |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑌 ⊆ ( Base ‘ 𝐾 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) |
30 |
15 23 27 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) |
31 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
32 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
33 |
17 28 31 32
|
omllaw4 |
⊢ ( ( 𝐾 ∈ OML ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
34 |
26 30 33
|
sylc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) |
35 |
34
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
36 |
4 32 1 5 2
|
polval2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
37 |
11 16 36
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ⊥ ‘ 𝑋 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
38 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
39 |
37 38
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
40 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
41 |
11 40
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝐾 ∈ OP ) |
42 |
17 32
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
43 |
41 21 42
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) |
44 |
17 31 1 5
|
pmapmeet |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
45 |
11 43 25 44
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
46 |
39 45
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
47 |
46
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) = ( ⊥ ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
48 |
11
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → 𝐾 ∈ Lat ) |
49 |
17 31
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
50 |
48 43 25 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
17 32 5 2
|
polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ⊥ ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
52 |
11 50 51
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ⊥ ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
53 |
47 52
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
54 |
53 38
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
55 |
17 32
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
56 |
41 50 55
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
57 |
17 31 1 5
|
pmapmeet |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
58 |
11 56 25 57
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ∩ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
59 |
54 58
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ( meet ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
60 |
4 1 5 2
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
61 |
11 16 60
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
62 |
35 59 61
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
63 |
62
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ⊆ 𝑌 ∧ 𝑌 = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑌 ) ) ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
64 |
10 63
|
sylan2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) = 𝑌 ) → ( ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ 𝑌 ) ) ∩ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |