| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omllaw4.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | omllaw4.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | omllaw4.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | omllaw4.o | ⊢  ⊥   =  ( oc ‘ 𝐾 ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  OML ) | 
						
							| 6 |  | omlop | ⊢ ( 𝐾  ∈  OML  →  𝐾  ∈  OP ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  OP ) | 
						
							| 8 |  | simp3 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 | 1 4 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 | 1 4 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  (  ⊥  ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 13 | 7 11 12 | syl2anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 14 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 15 | 1 2 14 3 4 | omllaw | ⊢ ( ( 𝐾  ∈  OML  ∧  (  ⊥  ‘ 𝑌 )  ∈  𝐵  ∧  (  ⊥  ‘ 𝑋 )  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 )  →  (  ⊥  ‘ 𝑋 )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 16 | 5 10 13 15 | syl3anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 )  →  (  ⊥  ‘ 𝑋 )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 17 | 1 2 4 | oplecon3b | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  ↔  (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 ) ) ) | 
						
							| 18 | 6 17 | syl3an1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  ↔  (  ⊥  ‘ 𝑌 )  ≤  (  ⊥  ‘ 𝑋 ) ) ) | 
						
							| 19 |  | omllat | ⊢ ( 𝐾  ∈  OML  →  𝐾  ∈  Lat ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  Lat ) | 
						
							| 21 | 1 3 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  (  ⊥  ‘ 𝑋 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 )  ∈  𝐵 ) | 
						
							| 22 | 20 13 8 21 | syl3anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 )  ∈  𝐵 ) | 
						
							| 23 | 1 4 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 )  ∈  𝐵 )  →  (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∈  𝐵 ) | 
						
							| 24 | 7 22 23 | syl2anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∈  𝐵 ) | 
						
							| 25 | 1 3 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 )  ∈  𝐵 ) | 
						
							| 26 | 20 24 8 25 | syl3anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 )  ∈  𝐵 ) | 
						
							| 27 | 1 4 | opcon3b | ⊢ ( ( 𝐾  ∈  OP  ∧  ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 )  =  𝑋  ↔  (  ⊥  ‘ 𝑋 )  =  (  ⊥  ‘ ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 ) ) ) ) | 
						
							| 28 | 7 26 11 27 | syl3anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 )  =  𝑋  ↔  (  ⊥  ‘ 𝑋 )  =  (  ⊥  ‘ ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 ) ) ) ) | 
						
							| 29 | 1 14 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 )  ∈  𝐵  ∧  (  ⊥  ‘ 𝑌 )  ∈  𝐵 )  →  ( ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ( join ‘ 𝐾 ) (  ⊥  ‘ 𝑌 ) )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ) ) | 
						
							| 30 | 20 22 10 29 | syl3anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ( join ‘ 𝐾 ) (  ⊥  ‘ 𝑌 ) )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ) ) | 
						
							| 31 |  | omlol | ⊢ ( 𝐾  ∈  OML  →  𝐾  ∈  OL ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  OL ) | 
						
							| 33 | 1 14 3 4 | oldmm2 | ⊢ ( ( 𝐾  ∈  OL  ∧  ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 )  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 ) )  =  ( ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ( join ‘ 𝐾 ) (  ⊥  ‘ 𝑌 ) ) ) | 
						
							| 34 | 32 22 8 33 | syl3anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 ) )  =  ( ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ( join ‘ 𝐾 ) (  ⊥  ‘ 𝑌 ) ) ) | 
						
							| 35 | 1 4 | opococ | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 36 | 7 8 35 | syl2anc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) )  =  𝑌 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑋 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) )  =  ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) ) ) | 
						
							| 39 | 30 34 38 | 3eqtr4d | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  (  ⊥  ‘ ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 ) )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( (  ⊥  ‘ 𝑋 )  =  (  ⊥  ‘ ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 ) )  ↔  (  ⊥  ‘ 𝑋 )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 41 | 28 40 | bitrd | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 )  =  𝑋  ↔  (  ⊥  ‘ 𝑋 )  =  ( (  ⊥  ‘ 𝑌 ) ( join ‘ 𝐾 ) ( (  ⊥  ‘ 𝑋 )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑌 ) ) ) ) ) ) | 
						
							| 42 | 16 18 41 | 3imtr4d | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  ( (  ⊥  ‘ ( (  ⊥  ‘ 𝑋 )  ∧  𝑌 ) )  ∧  𝑌 )  =  𝑋 ) ) |