| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omllaw5.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | omllaw5.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | omllaw5.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 4 |  | omllaw5.o | ⊢  ⊥   =  ( oc ‘ 𝐾 ) | 
						
							| 5 |  | simp1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝐾  ∈  OML ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | omllat | ⊢ ( 𝐾  ∈  OML  →  𝐾  ∈  Lat ) | 
						
							| 8 | 1 2 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 9 | 7 8 | syl3an1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) | 
						
							| 10 | 5 6 9 | 3jca | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵 ) ) | 
						
							| 11 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 12 | 1 11 2 | latlej1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑌 ) ) | 
						
							| 13 | 7 12 | syl3an1 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  𝑋 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑌 ) ) | 
						
							| 14 | 1 11 2 3 4 | omllaw2N | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  ( 𝑋  ∨  𝑌 )  ∈  𝐵 )  →  ( 𝑋 ( le ‘ 𝐾 ) ( 𝑋  ∨  𝑌 )  →  ( 𝑋  ∨  ( (  ⊥  ‘ 𝑋 )  ∧  ( 𝑋  ∨  𝑌 ) ) )  =  ( 𝑋  ∨  𝑌 ) ) ) | 
						
							| 15 | 10 13 14 | sylc | ⊢ ( ( 𝐾  ∈  OML  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ∨  ( (  ⊥  ‘ 𝑋 )  ∧  ( 𝑋  ∨  𝑌 ) ) )  =  ( 𝑋  ∨  𝑌 ) ) |