| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omllaw5.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | omllaw5.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | omllaw5.m |  |-  ./\ = ( meet ` K ) | 
						
							| 4 |  | omllaw5.o |  |-  ._|_ = ( oc ` K ) | 
						
							| 5 |  | simp1 |  |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. OML ) | 
						
							| 6 |  | simp2 |  |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> X e. B ) | 
						
							| 7 |  | omllat |  |-  ( K e. OML -> K e. Lat ) | 
						
							| 8 | 1 2 | latjcl |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) | 
						
							| 9 | 7 8 | syl3an1 |  |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) | 
						
							| 10 | 5 6 9 | 3jca |  |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( K e. OML /\ X e. B /\ ( X .\/ Y ) e. B ) ) | 
						
							| 11 |  | eqid |  |-  ( le ` K ) = ( le ` K ) | 
						
							| 12 | 1 11 2 | latlej1 |  |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X ( le ` K ) ( X .\/ Y ) ) | 
						
							| 13 | 7 12 | syl3an1 |  |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> X ( le ` K ) ( X .\/ Y ) ) | 
						
							| 14 | 1 11 2 3 4 | omllaw2N |  |-  ( ( K e. OML /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X ( le ` K ) ( X .\/ Y ) -> ( X .\/ ( ( ._|_ ` X ) ./\ ( X .\/ Y ) ) ) = ( X .\/ Y ) ) ) | 
						
							| 15 | 10 13 14 | sylc |  |-  ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .\/ ( ( ._|_ ` X ) ./\ ( X .\/ Y ) ) ) = ( X .\/ Y ) ) |