| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmtcom.b |
|- B = ( Base ` K ) |
| 2 |
|
cmtcom.c |
|- C = ( cm ` K ) |
| 3 |
|
omllat |
|- ( K e. OML -> K e. Lat ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. Lat ) |
| 5 |
|
omlop |
|- ( K e. OML -> K e. OP ) |
| 6 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 7 |
1 6
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 8 |
5 7
|
sylan |
|- ( ( K e. OML /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 9 |
8
|
3adant3 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 10 |
|
simp3 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> Y e. B ) |
| 11 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 12 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 13 |
1 11 12
|
latlej2 |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ Y e. B ) -> Y ( le ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) |
| 14 |
4 9 10 13
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> Y ( le ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) |
| 15 |
1 12
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) |
| 16 |
4 9 10 15
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) |
| 17 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 18 |
1 11 17
|
latleeqm2 |
|- ( ( K e. Lat /\ Y e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) -> ( Y ( le ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) <-> ( ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ( meet ` K ) Y ) = Y ) ) |
| 19 |
4 10 16 18
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( Y ( le ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) <-> ( ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ( meet ` K ) Y ) = Y ) ) |
| 20 |
14 19
|
mpbid |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ( meet ` K ) Y ) = Y ) |
| 21 |
20
|
oveq2d |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ( meet ` K ) Y ) ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) Y ) ) |
| 22 |
|
omlol |
|- ( K e. OML -> K e. OL ) |
| 23 |
22
|
3ad2ant1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. OL ) |
| 24 |
5
|
3ad2ant1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. OP ) |
| 25 |
1 6
|
opoccl |
|- ( ( K e. OP /\ Y e. B ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 26 |
24 10 25
|
syl2anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 27 |
1 12
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) e. B ) |
| 28 |
4 9 26 27
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) e. B ) |
| 29 |
1 17
|
latmassOLD |
|- ( ( K e. OL /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B /\ Y e. B ) ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ( meet ` K ) Y ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ( meet ` K ) Y ) ) ) |
| 30 |
23 28 16 10 29
|
syl13anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ( meet ` K ) Y ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ( meet ` K ) Y ) ) ) |
| 31 |
1 12 17 6
|
oldmm1 |
|- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) |
| 32 |
22 31
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) = ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) |
| 33 |
32
|
oveq1d |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) Y ) ) |
| 34 |
21 30 33
|
3eqtr4rd |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) = ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ( meet ` K ) Y ) ) |
| 35 |
34
|
adantr |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) = ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ( meet ` K ) Y ) ) |
| 36 |
1 12 17 6
|
oldmj4 |
|- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) = ( X ( meet ` K ) Y ) ) |
| 37 |
22 36
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) = ( X ( meet ` K ) Y ) ) |
| 38 |
1 12 17 6
|
oldmj2 |
|- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) = ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) |
| 39 |
22 38
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) = ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) |
| 40 |
37 39
|
oveq12d |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ( join ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) |
| 41 |
40
|
eqeq2d |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X = ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ( join ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) <-> X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) ) |
| 42 |
41
|
biimpar |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> X = ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ( join ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) ) |
| 43 |
42
|
fveq2d |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( oc ` K ) ` X ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ( join ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) ) ) |
| 44 |
1 12 17 6
|
oldmj4 |
|- ( ( K e. OL /\ ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ( join ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) |
| 45 |
23 28 16 44
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ( join ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) |
| 46 |
45
|
adantr |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ) ( join ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) ) = ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ) |
| 47 |
43 46
|
eqtr2d |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) = ( ( oc ` K ) ` X ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( ( ( ( oc ` K ) ` X ) ( join ` K ) ( ( oc ` K ) ` Y ) ) ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) ( meet ` K ) Y ) = ( ( ( oc ` K ) ` X ) ( meet ` K ) Y ) ) |
| 49 |
35 48
|
eqtrd |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) = ( ( ( oc ` K ) ` X ) ( meet ` K ) Y ) ) |
| 50 |
49
|
oveq2d |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( X ( meet ` K ) Y ) ( join ` K ) ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) ) = ( ( X ( meet ` K ) Y ) ( join ` K ) ( ( ( oc ` K ) ` X ) ( meet ` K ) Y ) ) ) |
| 51 |
|
simp1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. OML ) |
| 52 |
1 17
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) Y ) e. B ) |
| 53 |
3 52
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) Y ) e. B ) |
| 54 |
51 53 10
|
3jca |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( K e. OML /\ ( X ( meet ` K ) Y ) e. B /\ Y e. B ) ) |
| 55 |
1 11 17
|
latmle2 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) Y ) ( le ` K ) Y ) |
| 56 |
3 55
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) Y ) ( le ` K ) Y ) |
| 57 |
1 11 12 17 6
|
omllaw2N |
|- ( ( K e. OML /\ ( X ( meet ` K ) Y ) e. B /\ Y e. B ) -> ( ( X ( meet ` K ) Y ) ( le ` K ) Y -> ( ( X ( meet ` K ) Y ) ( join ` K ) ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) ) = Y ) ) |
| 58 |
54 56 57
|
sylc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( X ( meet ` K ) Y ) ( join ` K ) ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) ) = Y ) |
| 59 |
58
|
adantr |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( X ( meet ` K ) Y ) ( join ` K ) ( ( ( oc ` K ) ` ( X ( meet ` K ) Y ) ) ( meet ` K ) Y ) ) = Y ) |
| 60 |
1 17
|
latmcom |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) Y ) = ( Y ( meet ` K ) X ) ) |
| 61 |
3 60
|
syl3an1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) Y ) = ( Y ( meet ` K ) X ) ) |
| 62 |
1 17
|
latmcom |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ( meet ` K ) Y ) = ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) |
| 63 |
4 9 10 62
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ( meet ` K ) Y ) = ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) |
| 64 |
61 63
|
oveq12d |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( X ( meet ` K ) Y ) ( join ` K ) ( ( ( oc ` K ) ` X ) ( meet ` K ) Y ) ) = ( ( Y ( meet ` K ) X ) ( join ` K ) ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) ) |
| 65 |
64
|
adantr |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> ( ( X ( meet ` K ) Y ) ( join ` K ) ( ( ( oc ` K ) ` X ) ( meet ` K ) Y ) ) = ( ( Y ( meet ` K ) X ) ( join ` K ) ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) ) |
| 66 |
50 59 65
|
3eqtr3d |
|- ( ( ( K e. OML /\ X e. B /\ Y e. B ) /\ X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) -> Y = ( ( Y ( meet ` K ) X ) ( join ` K ) ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) ) |
| 67 |
66
|
ex |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) -> Y = ( ( Y ( meet ` K ) X ) ( join ` K ) ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) ) ) |
| 68 |
1 12 17 6 2
|
cmtvalN |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> X = ( ( X ( meet ` K ) Y ) ( join ` K ) ( X ( meet ` K ) ( ( oc ` K ) ` Y ) ) ) ) ) |
| 69 |
1 12 17 6 2
|
cmtvalN |
|- ( ( K e. OML /\ Y e. B /\ X e. B ) -> ( Y C X <-> Y = ( ( Y ( meet ` K ) X ) ( join ` K ) ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) ) ) |
| 70 |
69
|
3com23 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( Y C X <-> Y = ( ( Y ( meet ` K ) X ) ( join ` K ) ( Y ( meet ` K ) ( ( oc ` K ) ` X ) ) ) ) ) |
| 71 |
67 68 70
|
3imtr4d |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y -> Y C X ) ) |