| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
|- A e. CH |
| 2 |
|
pjoml2.2 |
|- B e. CH |
| 3 |
1
|
choccli |
|- ( _|_ ` A ) e. CH |
| 4 |
2 3
|
chub2i |
|- B C_ ( ( _|_ ` A ) vH B ) |
| 5 |
|
sseqin2 |
|- ( B C_ ( ( _|_ ` A ) vH B ) <-> ( ( ( _|_ ` A ) vH B ) i^i B ) = B ) |
| 6 |
4 5
|
mpbi |
|- ( ( ( _|_ ` A ) vH B ) i^i B ) = B |
| 7 |
6
|
ineq2i |
|- ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( ( _|_ ` A ) vH B ) i^i B ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) |
| 8 |
|
inass |
|- ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( ( _|_ ` A ) vH B ) i^i B ) ) |
| 9 |
1 2
|
chdmm1i |
|- ( _|_ ` ( A i^i B ) ) = ( ( _|_ ` A ) vH ( _|_ ` B ) ) |
| 10 |
9
|
ineq1i |
|- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i B ) |
| 11 |
7 8 10
|
3eqtr4ri |
|- ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) |
| 12 |
1 2
|
chdmj4i |
|- ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) = ( A i^i B ) |
| 13 |
1 2
|
chdmj2i |
|- ( _|_ ` ( ( _|_ ` A ) vH B ) ) = ( A i^i ( _|_ ` B ) ) |
| 14 |
12 13
|
oveq12i |
|- ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) |
| 15 |
14
|
eqeq2i |
|- ( A = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 16 |
15
|
biimpri |
|- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> A = ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) |
| 17 |
16
|
fveq2d |
|- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( _|_ ` A ) = ( _|_ ` ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) ) |
| 18 |
2
|
choccli |
|- ( _|_ ` B ) e. CH |
| 19 |
3 18
|
chjcli |
|- ( ( _|_ ` A ) vH ( _|_ ` B ) ) e. CH |
| 20 |
3 2
|
chjcli |
|- ( ( _|_ ` A ) vH B ) e. CH |
| 21 |
19 20
|
chdmj4i |
|- ( _|_ ` ( ( _|_ ` ( ( _|_ ` A ) vH ( _|_ ` B ) ) ) vH ( _|_ ` ( ( _|_ ` A ) vH B ) ) ) ) = ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) |
| 22 |
17 21
|
eqtr2di |
|- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) = ( _|_ ` A ) ) |
| 23 |
22
|
ineq1d |
|- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( ( ( _|_ ` A ) vH ( _|_ ` B ) ) i^i ( ( _|_ ` A ) vH B ) ) i^i B ) = ( ( _|_ ` A ) i^i B ) ) |
| 24 |
11 23
|
eqtrid |
|- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( _|_ ` ( A i^i B ) ) i^i B ) = ( ( _|_ ` A ) i^i B ) ) |
| 25 |
24
|
oveq2d |
|- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) ) |
| 26 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 27 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 28 |
27 2
|
pjoml2i |
|- ( ( A i^i B ) C_ B -> ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B ) |
| 29 |
26 28
|
ax-mp |
|- ( ( A i^i B ) vH ( ( _|_ ` ( A i^i B ) ) i^i B ) ) = B |
| 30 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
| 31 |
|
incom |
|- ( ( _|_ ` A ) i^i B ) = ( B i^i ( _|_ ` A ) ) |
| 32 |
30 31
|
oveq12i |
|- ( ( A i^i B ) vH ( ( _|_ ` A ) i^i B ) ) = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) |
| 33 |
25 29 32
|
3eqtr3g |
|- ( A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) -> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) |
| 34 |
1 2
|
cmbri |
|- ( A C_H B <-> A = ( ( A i^i B ) vH ( A i^i ( _|_ ` B ) ) ) ) |
| 35 |
2 1
|
cmbri |
|- ( B C_H A <-> B = ( ( B i^i A ) vH ( B i^i ( _|_ ` A ) ) ) ) |
| 36 |
33 34 35
|
3imtr4i |
|- ( A C_H B -> B C_H A ) |