Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
4 |
2 3
|
chub2i |
⊢ 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
5 |
|
sseqin2 |
⊢ ( 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ↔ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) = 𝐵 ) |
6 |
4 5
|
mpbi |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) = 𝐵 |
7 |
6
|
ineq2i |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) |
8 |
|
inass |
⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∩ 𝐵 ) ) |
9 |
1 2
|
chdmm1i |
⊢ ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
10 |
9
|
ineq1i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 ) |
11 |
7 8 10
|
3eqtr4ri |
⊢ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ∩ 𝐵 ) |
12 |
1 2
|
chdmj4i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∩ 𝐵 ) |
13 |
1 2
|
chdmj2i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) |
14 |
12 13
|
oveq12i |
⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
15 |
14
|
eqeq2i |
⊢ ( 𝐴 = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
16 |
15
|
biimpri |
⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → 𝐴 = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) ) |
18 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
19 |
3 18
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
20 |
3 2
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ∈ Cℋ |
21 |
19 20
|
chdmj4i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∨ℋ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
22 |
17 21
|
eqtr2di |
⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ⊥ ‘ 𝐴 ) ) |
23 |
22
|
ineq1d |
⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ∩ 𝐵 ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
24 |
11 23
|
syl5eq |
⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
26 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
27 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
28 |
27 2
|
pjoml2i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = 𝐵 ) |
29 |
26 28
|
ax-mp |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ 𝐵 ) ) ∩ 𝐵 ) ) = 𝐵 |
30 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
31 |
|
incom |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) |
32 |
30 31
|
oveq12i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) |
33 |
25 29 32
|
3eqtr3g |
⊢ ( 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → 𝐵 = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) ) |
34 |
1 2
|
cmbri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
35 |
2 1
|
cmbri |
⊢ ( 𝐵 𝐶ℋ 𝐴 ↔ 𝐵 = ( ( 𝐵 ∩ 𝐴 ) ∨ℋ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) ) |
36 |
33 34 35
|
3imtr4i |
⊢ ( 𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴 ) |