Metamath Proof Explorer


Theorem pjoml2i

Description: Variation of orthomodular law. Definition in Kalmbach p. 22. (Contributed by NM, 31-Oct-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion pjoml2i ( 𝐴𝐵 → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 pjoml2.1 𝐴C
2 pjoml2.2 𝐵C
3 inss2 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ⊆ 𝐵
4 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
5 4 2 chincli ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ C
6 1 5 2 chlubii ( ( 𝐴𝐵 ∧ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ⊆ 𝐵 ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 )
7 3 6 mpan2 ( 𝐴𝐵 → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 )
8 1 5 chdmj1i ( ⊥ ‘ ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) )
9 8 ineq2i ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) )
10 incom ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 )
11 10 ineq1i ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) )
12 inass ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) )
13 5 chocini ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = 0
14 11 12 13 3eqtr3i ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0
15 9 14 eqtri ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0
16 1 5 chjcli ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∈ C
17 2 chshii 𝐵S
18 16 17 pjomli ( ( ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0 ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 )
19 7 15 18 sylancl ( 𝐴𝐵 → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 )