| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
inss2 |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ⊆ 𝐵 |
| 4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 |
4 2
|
chincli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ |
| 6 |
1 5 2
|
chlubii |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ⊆ 𝐵 ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 ) |
| 7 |
3 6
|
mpan2 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 ) |
| 8 |
1 5
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 9 |
8
|
ineq2i |
⊢ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) |
| 10 |
|
incom |
⊢ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) |
| 11 |
10
|
ineq1i |
⊢ ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 12 |
|
inass |
⊢ ( ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) |
| 13 |
5
|
chocini |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) = 0ℋ |
| 14 |
11 12 13
|
3eqtr3i |
⊢ ( 𝐵 ∩ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0ℋ |
| 15 |
9 14
|
eqtri |
⊢ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0ℋ |
| 16 |
1 5
|
chjcli |
⊢ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∈ Cℋ |
| 17 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
| 18 |
16 17
|
pjomli |
⊢ ( ( ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ⊆ 𝐵 ∧ ( 𝐵 ∩ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) = 0ℋ ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) |
| 19 |
7 15 18
|
sylancl |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) |