| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 5 |
3 4
|
pjoml2i |
⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) → ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ 𝐵 ) ) |
| 6 |
2 1
|
chsscon3i |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( ⊥ ‘ 𝐴 ) ⊆ ( ⊥ ‘ 𝐵 ) ) |
| 7 |
|
eqcom |
⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = 𝐵 ↔ 𝐵 = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 8 |
3
|
choccli |
⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ |
| 9 |
8 4
|
chincli |
⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 10 |
1 9
|
chdmj2i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 11 |
3 2
|
chdmm4i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 12 |
11
|
ineq2i |
⊢ ( 𝐴 ∩ ( ⊥ ‘ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 13 |
10 12
|
eqtri |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 14 |
13
|
eqeq1i |
⊢ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = 𝐵 ) |
| 15 |
3 9
|
chjcli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 16 |
2 15
|
chcon2i |
⊢ ( 𝐵 = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ 𝐵 ) ) |
| 17 |
7 14 16
|
3bitr3i |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = 𝐵 ↔ ( ( ⊥ ‘ 𝐴 ) ∨ℋ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ⊥ ‘ 𝐵 ) ) |
| 18 |
5 6 17
|
3imtr4i |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = 𝐵 ) |