Metamath Proof Explorer
Description: Commutation is symmetric. Theorem 2(v) of Kalmbach p. 22.
(Contributed by NM, 4-Nov-2000) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
|
Assertion |
cmcmi |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
cmcmlem |
⊢ ( 𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴 ) |
4 |
2 1
|
cmcmlem |
⊢ ( 𝐵 𝐶ℋ 𝐴 → 𝐴 𝐶ℋ 𝐵 ) |
5 |
3 4
|
impbii |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) |