Description: Commutation is symmetric. Theorem 2(v) in Kalmbach p. 22. ( cmcmi analog.) (Contributed by NM, 7-Nov-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmtcom.b | |- B = ( Base ` K ) |
|
| cmtcom.c | |- C = ( cm ` K ) |
||
| Assertion | cmtcomN | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> Y C X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmtcom.b | |- B = ( Base ` K ) |
|
| 2 | cmtcom.c | |- C = ( cm ` K ) |
|
| 3 | 1 2 | cmtcomlemN | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y -> Y C X ) ) |
| 4 | 1 2 | cmtcomlemN | |- ( ( K e. OML /\ Y e. B /\ X e. B ) -> ( Y C X -> X C Y ) ) |
| 5 | 4 | 3com23 | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( Y C X -> X C Y ) ) |
| 6 | 3 5 | impbid | |- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> Y C X ) ) |