Metamath Proof Explorer


Theorem cmtcomN

Description: Commutation is symmetric. Theorem 2(v) in Kalmbach p. 22. ( cmcmi analog.) (Contributed by NM, 7-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtcom.b B=BaseK
cmtcom.c C=cmK
Assertion cmtcomN KOMLXBYBXCYYCX

Proof

Step Hyp Ref Expression
1 cmtcom.b B=BaseK
2 cmtcom.c C=cmK
3 1 2 cmtcomlemN KOMLXBYBXCYYCX
4 1 2 cmtcomlemN KOMLYBXBYCXXCY
5 4 3com23 KOMLXBYBYCXXCY
6 3 5 impbid KOMLXBYBXCYYCX