Metamath Proof Explorer


Theorem cmtcomlemN

Description: Lemma for cmtcomN . ( cmcmlem analog.) (Contributed by NM, 7-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtcom.b B=BaseK
cmtcom.c C=cmK
Assertion cmtcomlemN KOMLXBYBXCYYCX

Proof

Step Hyp Ref Expression
1 cmtcom.b B=BaseK
2 cmtcom.c C=cmK
3 omllat KOMLKLat
4 3 3ad2ant1 KOMLXBYBKLat
5 omlop KOMLKOP
6 eqid ocK=ocK
7 1 6 opoccl KOPXBocKXB
8 5 7 sylan KOMLXBocKXB
9 8 3adant3 KOMLXBYBocKXB
10 simp3 KOMLXBYBYB
11 eqid K=K
12 eqid joinK=joinK
13 1 11 12 latlej2 KLatocKXBYBYKocKXjoinKY
14 4 9 10 13 syl3anc KOMLXBYBYKocKXjoinKY
15 1 12 latjcl KLatocKXBYBocKXjoinKYB
16 4 9 10 15 syl3anc KOMLXBYBocKXjoinKYB
17 eqid meetK=meetK
18 1 11 17 latleeqm2 KLatYBocKXjoinKYBYKocKXjoinKYocKXjoinKYmeetKY=Y
19 4 10 16 18 syl3anc KOMLXBYBYKocKXjoinKYocKXjoinKYmeetKY=Y
20 14 19 mpbid KOMLXBYBocKXjoinKYmeetKY=Y
21 20 oveq2d KOMLXBYBocKXjoinKocKYmeetKocKXjoinKYmeetKY=ocKXjoinKocKYmeetKY
22 omlol KOMLKOL
23 22 3ad2ant1 KOMLXBYBKOL
24 5 3ad2ant1 KOMLXBYBKOP
25 1 6 opoccl KOPYBocKYB
26 24 10 25 syl2anc KOMLXBYBocKYB
27 1 12 latjcl KLatocKXBocKYBocKXjoinKocKYB
28 4 9 26 27 syl3anc KOMLXBYBocKXjoinKocKYB
29 1 17 latmassOLD KOLocKXjoinKocKYBocKXjoinKYBYBocKXjoinKocKYmeetKocKXjoinKYmeetKY=ocKXjoinKocKYmeetKocKXjoinKYmeetKY
30 23 28 16 10 29 syl13anc KOMLXBYBocKXjoinKocKYmeetKocKXjoinKYmeetKY=ocKXjoinKocKYmeetKocKXjoinKYmeetKY
31 1 12 17 6 oldmm1 KOLXBYBocKXmeetKY=ocKXjoinKocKY
32 22 31 syl3an1 KOMLXBYBocKXmeetKY=ocKXjoinKocKY
33 32 oveq1d KOMLXBYBocKXmeetKYmeetKY=ocKXjoinKocKYmeetKY
34 21 30 33 3eqtr4rd KOMLXBYBocKXmeetKYmeetKY=ocKXjoinKocKYmeetKocKXjoinKYmeetKY
35 34 adantr KOMLXBYBX=XmeetKYjoinKXmeetKocKYocKXmeetKYmeetKY=ocKXjoinKocKYmeetKocKXjoinKYmeetKY
36 1 12 17 6 oldmj4 KOLXBYBocKocKXjoinKocKY=XmeetKY
37 22 36 syl3an1 KOMLXBYBocKocKXjoinKocKY=XmeetKY
38 1 12 17 6 oldmj2 KOLXBYBocKocKXjoinKY=XmeetKocKY
39 22 38 syl3an1 KOMLXBYBocKocKXjoinKY=XmeetKocKY
40 37 39 oveq12d KOMLXBYBocKocKXjoinKocKYjoinKocKocKXjoinKY=XmeetKYjoinKXmeetKocKY
41 40 eqeq2d KOMLXBYBX=ocKocKXjoinKocKYjoinKocKocKXjoinKYX=XmeetKYjoinKXmeetKocKY
42 41 biimpar KOMLXBYBX=XmeetKYjoinKXmeetKocKYX=ocKocKXjoinKocKYjoinKocKocKXjoinKY
43 42 fveq2d KOMLXBYBX=XmeetKYjoinKXmeetKocKYocKX=ocKocKocKXjoinKocKYjoinKocKocKXjoinKY
44 1 12 17 6 oldmj4 KOLocKXjoinKocKYBocKXjoinKYBocKocKocKXjoinKocKYjoinKocKocKXjoinKY=ocKXjoinKocKYmeetKocKXjoinKY
45 23 28 16 44 syl3anc KOMLXBYBocKocKocKXjoinKocKYjoinKocKocKXjoinKY=ocKXjoinKocKYmeetKocKXjoinKY
46 45 adantr KOMLXBYBX=XmeetKYjoinKXmeetKocKYocKocKocKXjoinKocKYjoinKocKocKXjoinKY=ocKXjoinKocKYmeetKocKXjoinKY
47 43 46 eqtr2d KOMLXBYBX=XmeetKYjoinKXmeetKocKYocKXjoinKocKYmeetKocKXjoinKY=ocKX
48 47 oveq1d KOMLXBYBX=XmeetKYjoinKXmeetKocKYocKXjoinKocKYmeetKocKXjoinKYmeetKY=ocKXmeetKY
49 35 48 eqtrd KOMLXBYBX=XmeetKYjoinKXmeetKocKYocKXmeetKYmeetKY=ocKXmeetKY
50 49 oveq2d KOMLXBYBX=XmeetKYjoinKXmeetKocKYXmeetKYjoinKocKXmeetKYmeetKY=XmeetKYjoinKocKXmeetKY
51 simp1 KOMLXBYBKOML
52 1 17 latmcl KLatXBYBXmeetKYB
53 3 52 syl3an1 KOMLXBYBXmeetKYB
54 51 53 10 3jca KOMLXBYBKOMLXmeetKYBYB
55 1 11 17 latmle2 KLatXBYBXmeetKYKY
56 3 55 syl3an1 KOMLXBYBXmeetKYKY
57 1 11 12 17 6 omllaw2N KOMLXmeetKYBYBXmeetKYKYXmeetKYjoinKocKXmeetKYmeetKY=Y
58 54 56 57 sylc KOMLXBYBXmeetKYjoinKocKXmeetKYmeetKY=Y
59 58 adantr KOMLXBYBX=XmeetKYjoinKXmeetKocKYXmeetKYjoinKocKXmeetKYmeetKY=Y
60 1 17 latmcom KLatXBYBXmeetKY=YmeetKX
61 3 60 syl3an1 KOMLXBYBXmeetKY=YmeetKX
62 1 17 latmcom KLatocKXBYBocKXmeetKY=YmeetKocKX
63 4 9 10 62 syl3anc KOMLXBYBocKXmeetKY=YmeetKocKX
64 61 63 oveq12d KOMLXBYBXmeetKYjoinKocKXmeetKY=YmeetKXjoinKYmeetKocKX
65 64 adantr KOMLXBYBX=XmeetKYjoinKXmeetKocKYXmeetKYjoinKocKXmeetKY=YmeetKXjoinKYmeetKocKX
66 50 59 65 3eqtr3d KOMLXBYBX=XmeetKYjoinKXmeetKocKYY=YmeetKXjoinKYmeetKocKX
67 66 ex KOMLXBYBX=XmeetKYjoinKXmeetKocKYY=YmeetKXjoinKYmeetKocKX
68 1 12 17 6 2 cmtvalN KOMLXBYBXCYX=XmeetKYjoinKXmeetKocKY
69 1 12 17 6 2 cmtvalN KOMLYBXBYCXY=YmeetKXjoinKYmeetKocKX
70 69 3com23 KOMLXBYBYCXY=YmeetKXjoinKYmeetKocKX
71 67 68 70 3imtr4d KOMLXBYBXCYYCX