Metamath Proof Explorer


Theorem omllaw2N

Description: Variation of orthomodular law. Definition of OML law in Kalmbach p. 22. ( pjoml2i analog.) (Contributed by NM, 6-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses omllaw.b B=BaseK
omllaw.l ˙=K
omllaw.j ˙=joinK
omllaw.m ˙=meetK
omllaw.o ˙=ocK
Assertion omllaw2N KOMLXBYBX˙YX˙˙X˙Y=Y

Proof

Step Hyp Ref Expression
1 omllaw.b B=BaseK
2 omllaw.l ˙=K
3 omllaw.j ˙=joinK
4 omllaw.m ˙=meetK
5 omllaw.o ˙=ocK
6 1 2 3 4 5 omllaw KOMLXBYBX˙YY=X˙Y˙˙X
7 eqcom X˙˙X˙Y=YY=X˙˙X˙Y
8 omllat KOMLKLat
9 8 3ad2ant1 KOMLXBYBKLat
10 omlop KOMLKOP
11 1 5 opoccl KOPXB˙XB
12 10 11 sylan KOMLXB˙XB
13 12 3adant3 KOMLXBYB˙XB
14 simp3 KOMLXBYBYB
15 1 4 latmcom KLat˙XBYB˙X˙Y=Y˙˙X
16 9 13 14 15 syl3anc KOMLXBYB˙X˙Y=Y˙˙X
17 16 oveq2d KOMLXBYBX˙˙X˙Y=X˙Y˙˙X
18 17 eqeq2d KOMLXBYBY=X˙˙X˙YY=X˙Y˙˙X
19 7 18 bitrid KOMLXBYBX˙˙X˙Y=YY=X˙Y˙˙X
20 6 19 sylibrd KOMLXBYBX˙YX˙˙X˙Y=Y