Description: Orthomodular law equivalent. Theorem 2(ii) of Kalmbach p. 22. ( pjoml analog.) (Contributed by NM, 19-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omllaw3.b | |
|
omllaw3.l | |
||
omllaw3.m | |
||
omllaw3.o | |
||
omllaw3.z | |
||
Assertion | omllaw3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omllaw3.b | |
|
2 | omllaw3.l | |
|
3 | omllaw3.m | |
|
4 | omllaw3.o | |
|
5 | omllaw3.z | |
|
6 | oveq2 | |
|
7 | 6 | adantl | |
8 | omlol | |
|
9 | eqid | |
|
10 | 1 9 5 | olj01 | |
11 | 8 10 | sylan | |
12 | 11 | 3adant3 | |
13 | 12 | adantr | |
14 | 7 13 | eqtr2d | |
15 | 14 | adantrl | |
16 | 1 2 9 3 4 | omllaw | |
17 | 16 | imp | |
18 | 17 | adantrr | |
19 | 15 18 | eqtr4d | |
20 | 19 | ex | |