Metamath Proof Explorer


Theorem omllaw3

Description: Orthomodular law equivalent. Theorem 2(ii) of Kalmbach p. 22. ( pjoml analog.) (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses omllaw3.b B=BaseK
omllaw3.l ˙=K
omllaw3.m ˙=meetK
omllaw3.o ˙=ocK
omllaw3.z 0˙=0.K
Assertion omllaw3 KOMLXBYBX˙YY˙˙X=0˙X=Y

Proof

Step Hyp Ref Expression
1 omllaw3.b B=BaseK
2 omllaw3.l ˙=K
3 omllaw3.m ˙=meetK
4 omllaw3.o ˙=ocK
5 omllaw3.z 0˙=0.K
6 oveq2 Y˙˙X=0˙XjoinKY˙˙X=XjoinK0˙
7 6 adantl KOMLXBYBY˙˙X=0˙XjoinKY˙˙X=XjoinK0˙
8 omlol KOMLKOL
9 eqid joinK=joinK
10 1 9 5 olj01 KOLXBXjoinK0˙=X
11 8 10 sylan KOMLXBXjoinK0˙=X
12 11 3adant3 KOMLXBYBXjoinK0˙=X
13 12 adantr KOMLXBYBY˙˙X=0˙XjoinK0˙=X
14 7 13 eqtr2d KOMLXBYBY˙˙X=0˙X=XjoinKY˙˙X
15 14 adantrl KOMLXBYBX˙YY˙˙X=0˙X=XjoinKY˙˙X
16 1 2 9 3 4 omllaw KOMLXBYBX˙YY=XjoinKY˙˙X
17 16 imp KOMLXBYBX˙YY=XjoinKY˙˙X
18 17 adantrr KOMLXBYBX˙YY˙˙X=0˙Y=XjoinKY˙˙X
19 15 18 eqtr4d KOMLXBYBX˙YY˙˙X=0˙X=Y
20 19 ex KOMLXBYBX˙YY˙˙X=0˙X=Y