Metamath Proof Explorer


Theorem omllaw3

Description: Orthomodular law equivalent. Theorem 2(ii) of Kalmbach p. 22. ( pjoml analog.) (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses omllaw3.b 𝐵 = ( Base ‘ 𝐾 )
omllaw3.l = ( le ‘ 𝐾 )
omllaw3.m = ( meet ‘ 𝐾 )
omllaw3.o = ( oc ‘ 𝐾 )
omllaw3.z 0 = ( 0. ‘ 𝐾 )
Assertion omllaw3 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) → 𝑋 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 omllaw3.b 𝐵 = ( Base ‘ 𝐾 )
2 omllaw3.l = ( le ‘ 𝐾 )
3 omllaw3.m = ( meet ‘ 𝐾 )
4 omllaw3.o = ( oc ‘ 𝐾 )
5 omllaw3.z 0 = ( 0. ‘ 𝐾 )
6 oveq2 ( ( 𝑌 ( 𝑋 ) ) = 0 → ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ( 𝑋 ) ) ) = ( 𝑋 ( join ‘ 𝐾 ) 0 ) )
7 6 adantl ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) → ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ( 𝑋 ) ) ) = ( 𝑋 ( join ‘ 𝐾 ) 0 ) )
8 omlol ( 𝐾 ∈ OML → 𝐾 ∈ OL )
9 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
10 1 9 5 olj01 ( ( 𝐾 ∈ OL ∧ 𝑋𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 )
11 8 10 sylan ( ( 𝐾 ∈ OML ∧ 𝑋𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 )
12 11 3adant3 ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 )
13 12 adantr ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 )
14 7 13 eqtr2d ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) → 𝑋 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ( 𝑋 ) ) ) )
15 14 adantrl ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) ) → 𝑋 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ( 𝑋 ) ) ) )
16 1 2 9 3 4 omllaw ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ( 𝑋 ) ) ) ) )
17 16 imp ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ( 𝑋 ) ) ) )
18 17 adantrr ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) ) → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ( 𝑋 ) ) ) )
19 15 18 eqtr4d ( ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑋 𝑌 ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) ) → 𝑋 = 𝑌 )
20 19 ex ( ( 𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋 𝑌 ∧ ( 𝑌 ( 𝑋 ) ) = 0 ) → 𝑋 = 𝑌 ) )