| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omllaw3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
omllaw3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
omllaw3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
omllaw3.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 5 |
|
omllaw3.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 6 |
|
oveq2 |
⊢ ( ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 → ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ( join ‘ 𝐾 ) 0 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ( join ‘ 𝐾 ) 0 ) ) |
| 8 |
|
omlol |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) |
| 9 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
| 10 |
1 9 5
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 11 |
8 10
|
sylan |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 13 |
12
|
adantr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 14 |
7 13
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → 𝑋 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 15 |
14
|
adantrl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) → 𝑋 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 16 |
1 2 9 3 4
|
omllaw |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 18 |
17
|
adantrr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 19 |
15 18
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) → 𝑋 = 𝑌 ) |
| 20 |
19
|
ex |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → 𝑋 = 𝑌 ) ) |