Description: The orthomodular law. Remark in Kalmbach p. 22. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjoml5 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ∈ Cℋ ) | |
| 2 | chjcl | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) | |
| 3 | chub1 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 4 | pjoml2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ∧ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) |