Metamath Proof Explorer


Theorem pjoml2

Description: Variation of orthomodular law. Definition in Kalmbach p. 22. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion pjoml2 ( ( 𝐴C𝐵C𝐴𝐵 ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 sseq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ) )
2 id ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → 𝐴 = if ( 𝐴C , 𝐴 , 0 ) )
3 fveq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) )
4 3 ineq1d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) = ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) )
5 2 4 oveq12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) ) )
6 5 eqeq1d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ↔ ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) ) = 𝐵 ) )
7 1 6 imbi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴𝐵 → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 → ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) ) = 𝐵 ) ) )
8 sseq2 ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) ⊆ if ( 𝐵C , 𝐵 , 0 ) ) )
9 ineq2 ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) = ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ if ( 𝐵C , 𝐵 , 0 ) ) )
10 9 oveq2d ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) ) = ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ if ( 𝐵C , 𝐵 , 0 ) ) ) )
11 id ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → 𝐵 = if ( 𝐵C , 𝐵 , 0 ) )
12 10 11 eqeq12d ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) ) = 𝐵 ↔ ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ if ( 𝐵C , 𝐵 , 0 ) ) ) = if ( 𝐵C , 𝐵 , 0 ) ) )
13 8 12 imbi12d ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( ( if ( 𝐴C , 𝐴 , 0 ) ⊆ 𝐵 → ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ 𝐵 ) ) = 𝐵 ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) ⊆ if ( 𝐵C , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ if ( 𝐵C , 𝐵 , 0 ) ) ) = if ( 𝐵C , 𝐵 , 0 ) ) ) )
14 h0elch 0C
15 14 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
16 14 elimel if ( 𝐵C , 𝐵 , 0 ) ∈ C
17 15 16 pjoml2i ( if ( 𝐴C , 𝐴 , 0 ) ⊆ if ( 𝐵C , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) ∨ ( ( ⊥ ‘ if ( 𝐴C , 𝐴 , 0 ) ) ∩ if ( 𝐵C , 𝐵 , 0 ) ) ) = if ( 𝐵C , 𝐵 , 0 ) )
18 7 13 17 dedth2h ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) )
19 18 3impia ( ( 𝐴C𝐵C𝐴𝐵 ) → ( 𝐴 ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 )