Metamath Proof Explorer


Theorem pjoml2

Description: Variation of orthomodular law. Definition in Kalmbach p. 22. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion pjoml2 ACBCABAAB=B

Proof

Step Hyp Ref Expression
1 sseq1 A=ifACA0ABifACA0B
2 id A=ifACA0A=ifACA0
3 fveq2 A=ifACA0A=ifACA0
4 3 ineq1d A=ifACA0AB=ifACA0B
5 2 4 oveq12d A=ifACA0AAB=ifACA0ifACA0B
6 5 eqeq1d A=ifACA0AAB=BifACA0ifACA0B=B
7 1 6 imbi12d A=ifACA0ABAAB=BifACA0BifACA0ifACA0B=B
8 sseq2 B=ifBCB0ifACA0BifACA0ifBCB0
9 ineq2 B=ifBCB0ifACA0B=ifACA0ifBCB0
10 9 oveq2d B=ifBCB0ifACA0ifACA0B=ifACA0ifACA0ifBCB0
11 id B=ifBCB0B=ifBCB0
12 10 11 eqeq12d B=ifBCB0ifACA0ifACA0B=BifACA0ifACA0ifBCB0=ifBCB0
13 8 12 imbi12d B=ifBCB0ifACA0BifACA0ifACA0B=BifACA0ifBCB0ifACA0ifACA0ifBCB0=ifBCB0
14 h0elch 0C
15 14 elimel ifACA0C
16 14 elimel ifBCB0C
17 15 16 pjoml2i ifACA0ifBCB0ifACA0ifACA0ifBCB0=ifBCB0
18 7 13 17 dedth2h ACBCABAAB=B
19 18 3impia ACBCABAAB=B