Step |
Hyp |
Ref |
Expression |
1 |
|
poml4.a |
|
2 |
|
poml4.p |
|
3 |
|
eqcom |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 1 5 2
|
2polvalN |
|
7 |
6
|
3adant2 |
|
8 |
7
|
eqeq2d |
|
9 |
8
|
biimpd |
|
10 |
3 9
|
syl5bi |
|
11 |
|
simpl1 |
|
12 |
|
hloml |
|
13 |
11 12
|
syl |
|
14 |
|
hlclat |
|
15 |
11 14
|
syl |
|
16 |
|
simpl2 |
|
17 |
|
eqid |
|
18 |
17 1
|
atssbase |
|
19 |
16 18
|
sstrdi |
|
20 |
17 4
|
clatlubcl |
|
21 |
15 19 20
|
syl2anc |
|
22 |
|
simpl3 |
|
23 |
22 18
|
sstrdi |
|
24 |
17 4
|
clatlubcl |
|
25 |
15 23 24
|
syl2anc |
|
26 |
13 21 25
|
3jca |
|
27 |
|
simprl |
|
28 |
|
eqid |
|
29 |
17 28 4
|
lubss |
|
30 |
15 23 27 29
|
syl3anc |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
17 28 31 32
|
omllaw4 |
|
34 |
26 30 33
|
sylc |
|
35 |
34
|
fveq2d |
|
36 |
4 32 1 5 2
|
polval2N |
|
37 |
11 16 36
|
syl2anc |
|
38 |
|
simprr |
|
39 |
37 38
|
ineq12d |
|
40 |
|
hlop |
|
41 |
11 40
|
syl |
|
42 |
17 32
|
opoccl |
|
43 |
41 21 42
|
syl2anc |
|
44 |
17 31 1 5
|
pmapmeet |
|
45 |
11 43 25 44
|
syl3anc |
|
46 |
39 45
|
eqtr4d |
|
47 |
46
|
fveq2d |
|
48 |
11
|
hllatd |
|
49 |
17 31
|
latmcl |
|
50 |
48 43 25 49
|
syl3anc |
|
51 |
17 32 5 2
|
polpmapN |
|
52 |
11 50 51
|
syl2anc |
|
53 |
47 52
|
eqtrd |
|
54 |
53 38
|
ineq12d |
|
55 |
17 32
|
opoccl |
|
56 |
41 50 55
|
syl2anc |
|
57 |
17 31 1 5
|
pmapmeet |
|
58 |
11 56 25 57
|
syl3anc |
|
59 |
54 58
|
eqtr4d |
|
60 |
4 1 5 2
|
2polvalN |
|
61 |
11 16 60
|
syl2anc |
|
62 |
35 59 61
|
3eqtr4d |
|
63 |
62
|
ex |
|
64 |
10 63
|
sylan2d |
|