Metamath Proof Explorer


Theorem 2polvalN

Description: Value of double polarity. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polval.u U=lubK
2polval.a A=AtomsK
2polval.m M=pmapK
2polval.p ˙=𝑃K
Assertion 2polvalN KHLXA˙˙X=MUX

Proof

Step Hyp Ref Expression
1 2polval.u U=lubK
2 2polval.a A=AtomsK
3 2polval.m M=pmapK
4 2polval.p ˙=𝑃K
5 eqid ocK=ocK
6 1 5 2 3 4 polval2N KHLXA˙X=MocKUX
7 6 fveq2d KHLXA˙˙X=˙MocKUX
8 hlop KHLKOP
9 8 adantr KHLXAKOP
10 hlclat KHLKCLat
11 eqid BaseK=BaseK
12 11 2 atssbase ABaseK
13 sstr XAABaseKXBaseK
14 12 13 mpan2 XAXBaseK
15 11 1 clatlubcl KCLatXBaseKUXBaseK
16 10 14 15 syl2an KHLXAUXBaseK
17 11 5 opoccl KOPUXBaseKocKUXBaseK
18 9 16 17 syl2anc KHLXAocKUXBaseK
19 11 5 3 4 polpmapN KHLocKUXBaseK˙MocKUX=MocKocKUX
20 18 19 syldan KHLXA˙MocKUX=MocKocKUX
21 11 5 opococ KOPUXBaseKocKocKUX=UX
22 9 16 21 syl2anc KHLXAocKocKUX=UX
23 22 fveq2d KHLXAMocKocKUX=MUX
24 7 20 23 3eqtrd KHLXA˙˙X=MUX