Metamath Proof Explorer


Theorem clatlubcl

Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses clatlubcl.b B=BaseK
clatlubcl.u U=lubK
Assertion clatlubcl KCLatSBUSB

Proof

Step Hyp Ref Expression
1 clatlubcl.b B=BaseK
2 clatlubcl.u U=lubK
3 eqid glbK=glbK
4 1 2 3 clatlem KCLatSBUSBglbKSB
5 4 simpld KCLatSBUSB