Metamath Proof Explorer


Theorem 2polssN

Description: A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polss.a A=AtomsK
2polss.p ˙=𝑃K
Assertion 2polssN KHLXAX˙˙X

Proof

Step Hyp Ref Expression
1 2polss.a A=AtomsK
2 2polss.p ˙=𝑃K
3 hlclat KHLKCLat
4 3 ad3antrrr KHLXApApXKCLat
5 simpr KHLXApApXpX
6 simpllr KHLXApApXXA
7 eqid BaseK=BaseK
8 7 1 atssbase ABaseK
9 6 8 sstrdi KHLXApApXXBaseK
10 eqid K=K
11 eqid lubK=lubK
12 7 10 11 lubel KCLatpXXBaseKpKlubKX
13 4 5 9 12 syl3anc KHLXApApXpKlubKX
14 13 ex KHLXApApXpKlubKX
15 14 ss2rabdv KHLXApA|pXpA|pKlubKX
16 sseqin2 XAAX=X
17 16 biimpi XAAX=X
18 17 adantl KHLXAAX=X
19 dfin5 AX=pA|pX
20 18 19 eqtr3di KHLXAX=pA|pX
21 eqid pmapK=pmapK
22 11 1 21 2 2polvalN KHLXA˙˙X=pmapKlubKX
23 sstr XAABaseKXBaseK
24 8 23 mpan2 XAXBaseK
25 7 11 clatlubcl KCLatXBaseKlubKXBaseK
26 3 24 25 syl2an KHLXAlubKXBaseK
27 7 10 1 21 pmapval KHLlubKXBaseKpmapKlubKX=pA|pKlubKX
28 26 27 syldan KHLXApmapKlubKX=pA|pKlubKX
29 22 28 eqtrd KHLXA˙˙X=pA|pKlubKX
30 15 20 29 3sstr4d KHLXAX˙˙X