Metamath Proof Explorer


Theorem 3polN

Description: Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polss.a A=AtomsK
2polss.p ˙=𝑃K
Assertion 3polN KHLSA˙˙˙S=˙S

Proof

Step Hyp Ref Expression
1 2polss.a A=AtomsK
2 2polss.p ˙=𝑃K
3 hlclat KHLKCLat
4 eqid BaseK=BaseK
5 4 1 atssbase ABaseK
6 sstr SAABaseKSBaseK
7 5 6 mpan2 SASBaseK
8 eqid lubK=lubK
9 4 8 clatlubcl KCLatSBaseKlubKSBaseK
10 3 7 9 syl2an KHLSAlubKSBaseK
11 eqid ocK=ocK
12 eqid pmapK=pmapK
13 4 11 12 2 polpmapN KHLlubKSBaseK˙pmapKlubKS=pmapKocKlubKS
14 10 13 syldan KHLSA˙pmapKlubKS=pmapKocKlubKS
15 8 1 12 2 2polvalN KHLSA˙˙S=pmapKlubKS
16 15 fveq2d KHLSA˙˙˙S=˙pmapKlubKS
17 8 11 1 12 2 polval2N KHLSA˙S=pmapKocKlubKS
18 14 16 17 3eqtr4d KHLSA˙˙˙S=˙S