Metamath Proof Explorer


Theorem polcon3N

Description: Contraposition law for polarity. Remark in Holland95 p. 223. (Contributed by NM, 23-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polss.a A=AtomsK
2polss.p ˙=𝑃K
Assertion polcon3N KHLYAXY˙Y˙X

Proof

Step Hyp Ref Expression
1 2polss.a A=AtomsK
2 2polss.p ˙=𝑃K
3 simp3 KHLYAXYXY
4 iinss1 XYpYpmapKocKppXpmapKocKp
5 sslin pYpmapKocKppXpmapKocKpApYpmapKocKpApXpmapKocKp
6 3 4 5 3syl KHLYAXYApYpmapKocKpApXpmapKocKp
7 eqid ocK=ocK
8 eqid pmapK=pmapK
9 7 1 8 2 polvalN KHLYA˙Y=ApYpmapKocKp
10 9 3adant3 KHLYAXY˙Y=ApYpmapKocKp
11 simp1 KHLYAXYKHL
12 simp2 KHLYAXYYA
13 3 12 sstrd KHLYAXYXA
14 7 1 8 2 polvalN KHLXA˙X=ApXpmapKocKp
15 11 13 14 syl2anc KHLYAXY˙X=ApXpmapKocKp
16 6 10 15 3sstr4d KHLYAXY˙Y˙X