Metamath Proof Explorer


Theorem polvalN

Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses polfval.o ˙ = oc K
polfval.a A = Atoms K
polfval.m M = pmap K
polfval.p P = 𝑃 K
Assertion polvalN K B X A P X = A p X M ˙ p

Proof

Step Hyp Ref Expression
1 polfval.o ˙ = oc K
2 polfval.a A = Atoms K
3 polfval.m M = pmap K
4 polfval.p P = 𝑃 K
5 2 fvexi A V
6 5 elpw2 X 𝒫 A X A
7 1 2 3 4 polfvalN K B P = m 𝒫 A A p m M ˙ p
8 7 fveq1d K B P X = m 𝒫 A A p m M ˙ p X
9 iineq1 m = X p m M ˙ p = p X M ˙ p
10 9 ineq2d m = X A p m M ˙ p = A p X M ˙ p
11 eqid m 𝒫 A A p m M ˙ p = m 𝒫 A A p m M ˙ p
12 5 inex1 A p X M ˙ p V
13 10 11 12 fvmpt X 𝒫 A m 𝒫 A A p m M ˙ p X = A p X M ˙ p
14 8 13 sylan9eq K B X 𝒫 A P X = A p X M ˙ p
15 6 14 sylan2br K B X A P X = A p X M ˙ p