Metamath Proof Explorer


Theorem iinss1

Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012)

Ref Expression
Assertion iinss1 ABxBCxAC

Proof

Step Hyp Ref Expression
1 ssralv ABxByCxAyC
2 eliin yVyxBCxByC
3 2 elv yxBCxByC
4 eliin yVyxACxAyC
5 4 elv yxACxAyC
6 1 3 5 3imtr4g AByxBCyxAC
7 6 ssrdv ABxBCxAC