Step |
Hyp |
Ref |
Expression |
1 |
|
2polss.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
2polss.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
4 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝐾 ∈ CLat ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ∈ 𝑋 ) |
6 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ⊆ 𝐴 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 1
|
atssbase |
⊢ 𝐴 ⊆ ( Base ‘ 𝐾 ) |
9 |
6 8
|
sstrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ⊆ ( Base ‘ 𝐾 ) ) |
10 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) |
12 |
7 10 11
|
lubel |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑝 ∈ 𝑋 ∧ 𝑋 ⊆ ( Base ‘ 𝐾 ) ) → 𝑝 ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) |
13 |
4 5 9 12
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) ∧ 𝑝 ∈ 𝑋 ) → 𝑝 ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) |
14 |
13
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑝 ∈ 𝑋 → 𝑝 ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
15 |
14
|
ss2rabdv |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → { 𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) } ) |
16 |
|
sseqin2 |
⊢ ( 𝑋 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝑋 ) = 𝑋 ) |
17 |
16
|
biimpi |
⊢ ( 𝑋 ⊆ 𝐴 → ( 𝐴 ∩ 𝑋 ) = 𝑋 ) |
18 |
17
|
adantl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝐴 ∩ 𝑋 ) = 𝑋 ) |
19 |
|
dfin5 |
⊢ ( 𝐴 ∩ 𝑋 ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋 } |
20 |
18 19
|
eqtr3di |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 = { 𝑝 ∈ 𝐴 ∣ 𝑝 ∈ 𝑋 } ) |
21 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
22 |
11 1 21 2
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
23 |
|
sstr |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ ( Base ‘ 𝐾 ) ) → 𝑋 ⊆ ( Base ‘ 𝐾 ) ) |
24 |
8 23
|
mpan2 |
⊢ ( 𝑋 ⊆ 𝐴 → 𝑋 ⊆ ( Base ‘ 𝐾 ) ) |
25 |
7 11
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ⊆ ( Base ‘ 𝐾 ) ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
3 24 25
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
7 10 1 21
|
pmapval |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) } ) |
28 |
26 27
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) } ) |
29 |
22 28
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = { 𝑝 ∈ 𝐴 ∣ 𝑝 ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑋 ) } ) |
30 |
15 20 29
|
3sstr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |