| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lublem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
lublem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
lublem.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
| 4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝐾 ∈ CLat ) |
| 5 |
|
sstr2 |
⊢ ( 𝑆 ⊆ 𝑇 → ( 𝑇 ⊆ 𝐵 → 𝑆 ⊆ 𝐵 ) ) |
| 6 |
5
|
impcom |
⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
| 7 |
6
|
3adant1 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
| 8 |
1 3
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 10 |
4 7 9
|
3jca |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) |
| 12 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑇 ⊆ 𝐵 ) |
| 13 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑇 ) |
| 14 |
13
|
3ad2antl3 |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑇 ) |
| 15 |
1 2 3
|
lubub |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) ) |
| 16 |
11 12 14 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) ) |
| 17 |
16
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) ) |
| 18 |
1 2 3
|
lubl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) → ( 𝑈 ‘ 𝑆 ) ≤ ( 𝑈 ‘ 𝑇 ) ) ) |
| 19 |
10 17 18
|
sylc |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑈 ‘ 𝑆 ) ≤ ( 𝑈 ‘ 𝑇 ) ) |